Cargando…
Anticancer Peptide Prediction via Multi-Kernel CNN and Attention Model
Background: Modern lifestyles mean that people are more likely to suffer from some form of cancer. As anticancer peptides can effectively kill cancer cells and play an important role in fighting cancer, they have been a subject of increasing research interest. Methods: This study presents a useful t...
Autores principales: | Wu, Xiujin, Zeng, Wenhua, Lin, Fan, Xu, Peng, Li, Xinzhu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092594/ https://www.ncbi.nlm.nih.gov/pubmed/35571059 http://dx.doi.org/10.3389/fgene.2022.887894 |
Ejemplares similares
-
CNNArginineMe: A CNN structure for training models for predicting arginine methylation sites based on the One-Hot encoding of peptide sequence
por: Zhao, Jiaojiao, et al.
Publicado: (2022) -
Multi-omics data integration for hepatocellular carcinoma subtyping with multi-kernel learning
por: Wang, Jiaying, et al.
Publicado: (2022) -
ACP-DA: Improving the Prediction of Anticancer Peptides Using Data Augmentation
por: Chen, Xian-gan, et al.
Publicado: (2021) -
Prediction of the tetramer protein complex interaction based on CNN and SVM
por: Lyu, Yanfen, et al.
Publicado: (2023) -
Multivariate Information Fusion With Fast Kernel Learning to Kernel Ridge Regression in Predicting LncRNA-Protein Interactions
por: Shen, Cong, et al.
Publicado: (2019)