Cargando…

Inhibition of ChREBP ubiquitination via the ROS/Akt-dependent downregulation of Smurf2 contributes to lysophosphatidic acid-induced fibrosis in renal mesangial cells

BACKGROUND: Mesangial cell fibrosis, a typical symptom of diabetic nephropathy (DN), is a major contributor to glomerulosclerosis. We previously reported that the pharmacological blockade of lysophosphatidic acid (LPA) signaling improves DN. Although LPA signaling is implicated in diabetic renal fib...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Donghee, Nam, Ga-Young, Seo, Eunhui, Jun, Hee-Sook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092836/
https://www.ncbi.nlm.nih.gov/pubmed/35538534
http://dx.doi.org/10.1186/s12929-022-00814-1
_version_ 1784705211122581504
author Kim, Donghee
Nam, Ga-Young
Seo, Eunhui
Jun, Hee-Sook
author_facet Kim, Donghee
Nam, Ga-Young
Seo, Eunhui
Jun, Hee-Sook
author_sort Kim, Donghee
collection PubMed
description BACKGROUND: Mesangial cell fibrosis, a typical symptom of diabetic nephropathy (DN), is a major contributor to glomerulosclerosis. We previously reported that the pharmacological blockade of lysophosphatidic acid (LPA) signaling improves DN. Although LPA signaling is implicated in diabetic renal fibrosis, the underlying molecular mechanisms remain unclear. Here, the role of carbohydrate-responsive element-binding protein (ChREBP) in LPA-induced renal fibrosis and the underlying mechanisms were investigated. METHODS: Eight-week-old wild-type and db/db mice were intraperitoneally injected with the vehicle or an LPAR1/3 antagonist, ki16425 (10 mg/kg), for 8 weeks on a daily basis, following which the mice were sacrificed and renal protein expression was analyzed. SV40 MES13 cells were treated with LPA in the presence or absence of ki16425, and the expression of ChREBP and fibrotic factors, including fibronectin, TGF-β, and IL-1β, was examined. The role of ChREBP in the LPA-induced fibrotic response was investigated by ChREBP overexpression or knockdown. The involvement of Smad ubiquitination regulatory factor-2 (Smurf2), an E3 ligase, in LPA-induced expression of ChREBP and fibrotic factors was investigated by Smurf2 overexpression or knockdown. To identify signaling molecules regulating Smurf2 expression by LPA, pharmacological inhibitors such as A6370 (Akt1/2 kinase inhibitor) and Ly 294002 (PI3K inhibitor) were used. RESULTS: The renal expression of ChREBP increased in diabetic db/db mice, and was reduced following treatment with the ki16425. Treatment with LPA induced the expression of ChREBP and fibrotic factors, including fibronectin, TGF-β, and IL-1β, in SV40 MES13 cells, which were positively correlated. The LPA-induced expression of fibrotic factors increased or decreased following ChREBP overexpression and knockdown, respectively. The production of reactive oxygen species (ROS) mediated the LPA-induced expression of ChREBP and fibrotic factors, and LPA decreased Smurf2 expression via Traf4-mediated ubiquitination. The LPA-induced expression of ubiquitinated-ChREBP increased or decreased following Smurf2 overexpression and knockdown, respectively. Additionally, Smurf2 knockdown significantly increased the expression of ChREBP and fibrotic factors. The pharmacological inhibition of Akt signaling suppressed the LPA-induced alterations in the expression of ChREBP and Smurf2. CONCLUSION: Collectively, the results demonstrated that the ROS/Akt-dependent downregulation of Smurf2 and the subsequent increase in ChREBP expression might be one of the mechanisms by which LPA induces mesangial cell fibrosis in DN. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12929-022-00814-1.
format Online
Article
Text
id pubmed-9092836
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-90928362022-05-12 Inhibition of ChREBP ubiquitination via the ROS/Akt-dependent downregulation of Smurf2 contributes to lysophosphatidic acid-induced fibrosis in renal mesangial cells Kim, Donghee Nam, Ga-Young Seo, Eunhui Jun, Hee-Sook J Biomed Sci Research BACKGROUND: Mesangial cell fibrosis, a typical symptom of diabetic nephropathy (DN), is a major contributor to glomerulosclerosis. We previously reported that the pharmacological blockade of lysophosphatidic acid (LPA) signaling improves DN. Although LPA signaling is implicated in diabetic renal fibrosis, the underlying molecular mechanisms remain unclear. Here, the role of carbohydrate-responsive element-binding protein (ChREBP) in LPA-induced renal fibrosis and the underlying mechanisms were investigated. METHODS: Eight-week-old wild-type and db/db mice were intraperitoneally injected with the vehicle or an LPAR1/3 antagonist, ki16425 (10 mg/kg), for 8 weeks on a daily basis, following which the mice were sacrificed and renal protein expression was analyzed. SV40 MES13 cells were treated with LPA in the presence or absence of ki16425, and the expression of ChREBP and fibrotic factors, including fibronectin, TGF-β, and IL-1β, was examined. The role of ChREBP in the LPA-induced fibrotic response was investigated by ChREBP overexpression or knockdown. The involvement of Smad ubiquitination regulatory factor-2 (Smurf2), an E3 ligase, in LPA-induced expression of ChREBP and fibrotic factors was investigated by Smurf2 overexpression or knockdown. To identify signaling molecules regulating Smurf2 expression by LPA, pharmacological inhibitors such as A6370 (Akt1/2 kinase inhibitor) and Ly 294002 (PI3K inhibitor) were used. RESULTS: The renal expression of ChREBP increased in diabetic db/db mice, and was reduced following treatment with the ki16425. Treatment with LPA induced the expression of ChREBP and fibrotic factors, including fibronectin, TGF-β, and IL-1β, in SV40 MES13 cells, which were positively correlated. The LPA-induced expression of fibrotic factors increased or decreased following ChREBP overexpression and knockdown, respectively. The production of reactive oxygen species (ROS) mediated the LPA-induced expression of ChREBP and fibrotic factors, and LPA decreased Smurf2 expression via Traf4-mediated ubiquitination. The LPA-induced expression of ubiquitinated-ChREBP increased or decreased following Smurf2 overexpression and knockdown, respectively. Additionally, Smurf2 knockdown significantly increased the expression of ChREBP and fibrotic factors. The pharmacological inhibition of Akt signaling suppressed the LPA-induced alterations in the expression of ChREBP and Smurf2. CONCLUSION: Collectively, the results demonstrated that the ROS/Akt-dependent downregulation of Smurf2 and the subsequent increase in ChREBP expression might be one of the mechanisms by which LPA induces mesangial cell fibrosis in DN. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12929-022-00814-1. BioMed Central 2022-05-10 /pmc/articles/PMC9092836/ /pubmed/35538534 http://dx.doi.org/10.1186/s12929-022-00814-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Kim, Donghee
Nam, Ga-Young
Seo, Eunhui
Jun, Hee-Sook
Inhibition of ChREBP ubiquitination via the ROS/Akt-dependent downregulation of Smurf2 contributes to lysophosphatidic acid-induced fibrosis in renal mesangial cells
title Inhibition of ChREBP ubiquitination via the ROS/Akt-dependent downregulation of Smurf2 contributes to lysophosphatidic acid-induced fibrosis in renal mesangial cells
title_full Inhibition of ChREBP ubiquitination via the ROS/Akt-dependent downregulation of Smurf2 contributes to lysophosphatidic acid-induced fibrosis in renal mesangial cells
title_fullStr Inhibition of ChREBP ubiquitination via the ROS/Akt-dependent downregulation of Smurf2 contributes to lysophosphatidic acid-induced fibrosis in renal mesangial cells
title_full_unstemmed Inhibition of ChREBP ubiquitination via the ROS/Akt-dependent downregulation of Smurf2 contributes to lysophosphatidic acid-induced fibrosis in renal mesangial cells
title_short Inhibition of ChREBP ubiquitination via the ROS/Akt-dependent downregulation of Smurf2 contributes to lysophosphatidic acid-induced fibrosis in renal mesangial cells
title_sort inhibition of chrebp ubiquitination via the ros/akt-dependent downregulation of smurf2 contributes to lysophosphatidic acid-induced fibrosis in renal mesangial cells
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092836/
https://www.ncbi.nlm.nih.gov/pubmed/35538534
http://dx.doi.org/10.1186/s12929-022-00814-1
work_keys_str_mv AT kimdonghee inhibitionofchrebpubiquitinationviatherosaktdependentdownregulationofsmurf2contributestolysophosphatidicacidinducedfibrosisinrenalmesangialcells
AT namgayoung inhibitionofchrebpubiquitinationviatherosaktdependentdownregulationofsmurf2contributestolysophosphatidicacidinducedfibrosisinrenalmesangialcells
AT seoeunhui inhibitionofchrebpubiquitinationviatherosaktdependentdownregulationofsmurf2contributestolysophosphatidicacidinducedfibrosisinrenalmesangialcells
AT junheesook inhibitionofchrebpubiquitinationviatherosaktdependentdownregulationofsmurf2contributestolysophosphatidicacidinducedfibrosisinrenalmesangialcells