Cargando…

Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses

Regulatory T cell (Treg) lymphatic migration is required for resolving inflammation and prolonging allograft survival. Focusing on Treg interactions with lymphatic endothelial cells (LECs), we dissect mechanisms and functional consequences of Treg transendothelial migration (TEM). Using three geneti...

Descripción completa

Detalles Bibliográficos
Autores principales: Saxena, Vikas, Piao, Wenji, Li, Lushen, Paluskievicz, Christina, Xiong, Yanbao, Simon, Thomas, Lakhan, Ram, Brinkman, C. Colin, Walden, Sarah, Hippen, Keli L., WillsonShirkey, Marina, Lee, Young S., Wagner, Chelsea, Blazar, Bruce R., Bromberg, Jonathan S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9093052/
https://www.ncbi.nlm.nih.gov/pubmed/35443187
http://dx.doi.org/10.1016/j.celrep.2022.110727
_version_ 1784705254912163840
author Saxena, Vikas
Piao, Wenji
Li, Lushen
Paluskievicz, Christina
Xiong, Yanbao
Simon, Thomas
Lakhan, Ram
Brinkman, C. Colin
Walden, Sarah
Hippen, Keli L.
WillsonShirkey, Marina
Lee, Young S.
Wagner, Chelsea
Blazar, Bruce R.
Bromberg, Jonathan S.
author_facet Saxena, Vikas
Piao, Wenji
Li, Lushen
Paluskievicz, Christina
Xiong, Yanbao
Simon, Thomas
Lakhan, Ram
Brinkman, C. Colin
Walden, Sarah
Hippen, Keli L.
WillsonShirkey, Marina
Lee, Young S.
Wagner, Chelsea
Blazar, Bruce R.
Bromberg, Jonathan S.
author_sort Saxena, Vikas
collection PubMed
description Regulatory T cell (Treg) lymphatic migration is required for resolving inflammation and prolonging allograft survival. Focusing on Treg interactions with lymphatic endothelial cells (LECs), we dissect mechanisms and functional consequences of Treg transendothelial migration (TEM). Using three genetic mouse models of pancreatic islet transplantation, we show that Treg lymphotoxin (LT) αβ and LEC LTβ receptor (LTβR) signaling are required for efficient Treg migration and suppressive function to prolong allograft survival. Inhibition of LT signaling increases Treg conversion to Foxp3(lo)CD25(lo) exTregs. In a transwell-based model of TEM across polarized LECs, non-migrated Tregs become exTregs. Such conversion is regulated by LTβR nuclear factor κB (NF-κB) signaling in LECs, which increases interleukin-6 (IL-6) production and drives exTreg conversion. Migrating Tregs are ectonucleotidase CD39(hi) and resist exTreg conversion in an adenosine-receptor-2A-dependent fashion. Human Tregs migrating across human LECs behave similarly. These molecular interactions can be targeted for therapeutic manipulation of immunity and suppression.
format Online
Article
Text
id pubmed-9093052
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-90930522022-05-11 Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses Saxena, Vikas Piao, Wenji Li, Lushen Paluskievicz, Christina Xiong, Yanbao Simon, Thomas Lakhan, Ram Brinkman, C. Colin Walden, Sarah Hippen, Keli L. WillsonShirkey, Marina Lee, Young S. Wagner, Chelsea Blazar, Bruce R. Bromberg, Jonathan S. Cell Rep Article Regulatory T cell (Treg) lymphatic migration is required for resolving inflammation and prolonging allograft survival. Focusing on Treg interactions with lymphatic endothelial cells (LECs), we dissect mechanisms and functional consequences of Treg transendothelial migration (TEM). Using three genetic mouse models of pancreatic islet transplantation, we show that Treg lymphotoxin (LT) αβ and LEC LTβ receptor (LTβR) signaling are required for efficient Treg migration and suppressive function to prolong allograft survival. Inhibition of LT signaling increases Treg conversion to Foxp3(lo)CD25(lo) exTregs. In a transwell-based model of TEM across polarized LECs, non-migrated Tregs become exTregs. Such conversion is regulated by LTβR nuclear factor κB (NF-κB) signaling in LECs, which increases interleukin-6 (IL-6) production and drives exTreg conversion. Migrating Tregs are ectonucleotidase CD39(hi) and resist exTreg conversion in an adenosine-receptor-2A-dependent fashion. Human Tregs migrating across human LECs behave similarly. These molecular interactions can be targeted for therapeutic manipulation of immunity and suppression. 2022-04-19 /pmc/articles/PMC9093052/ /pubmed/35443187 http://dx.doi.org/10.1016/j.celrep.2022.110727 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Saxena, Vikas
Piao, Wenji
Li, Lushen
Paluskievicz, Christina
Xiong, Yanbao
Simon, Thomas
Lakhan, Ram
Brinkman, C. Colin
Walden, Sarah
Hippen, Keli L.
WillsonShirkey, Marina
Lee, Young S.
Wagner, Chelsea
Blazar, Bruce R.
Bromberg, Jonathan S.
Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses
title Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses
title_full Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses
title_fullStr Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses
title_full_unstemmed Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses
title_short Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses
title_sort treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9093052/
https://www.ncbi.nlm.nih.gov/pubmed/35443187
http://dx.doi.org/10.1016/j.celrep.2022.110727
work_keys_str_mv AT saxenavikas tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses
AT piaowenji tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses
AT lilushen tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses
AT paluskieviczchristina tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses
AT xiongyanbao tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses
AT simonthomas tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses
AT lakhanram tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses
AT brinkmanccolin tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses
AT waldensarah tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses
AT hippenkelil tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses
AT willsonshirkeymarina tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses
AT leeyoungs tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses
AT wagnerchelsea tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses
AT blazarbrucer tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses
AT brombergjonathans tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses