Cargando…
Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses
Regulatory T cell (Treg) lymphatic migration is required for resolving inflammation and prolonging allograft survival. Focusing on Treg interactions with lymphatic endothelial cells (LECs), we dissect mechanisms and functional consequences of Treg transendothelial migration (TEM). Using three geneti...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9093052/ https://www.ncbi.nlm.nih.gov/pubmed/35443187 http://dx.doi.org/10.1016/j.celrep.2022.110727 |
_version_ | 1784705254912163840 |
---|---|
author | Saxena, Vikas Piao, Wenji Li, Lushen Paluskievicz, Christina Xiong, Yanbao Simon, Thomas Lakhan, Ram Brinkman, C. Colin Walden, Sarah Hippen, Keli L. WillsonShirkey, Marina Lee, Young S. Wagner, Chelsea Blazar, Bruce R. Bromberg, Jonathan S. |
author_facet | Saxena, Vikas Piao, Wenji Li, Lushen Paluskievicz, Christina Xiong, Yanbao Simon, Thomas Lakhan, Ram Brinkman, C. Colin Walden, Sarah Hippen, Keli L. WillsonShirkey, Marina Lee, Young S. Wagner, Chelsea Blazar, Bruce R. Bromberg, Jonathan S. |
author_sort | Saxena, Vikas |
collection | PubMed |
description | Regulatory T cell (Treg) lymphatic migration is required for resolving inflammation and prolonging allograft survival. Focusing on Treg interactions with lymphatic endothelial cells (LECs), we dissect mechanisms and functional consequences of Treg transendothelial migration (TEM). Using three genetic mouse models of pancreatic islet transplantation, we show that Treg lymphotoxin (LT) αβ and LEC LTβ receptor (LTβR) signaling are required for efficient Treg migration and suppressive function to prolong allograft survival. Inhibition of LT signaling increases Treg conversion to Foxp3(lo)CD25(lo) exTregs. In a transwell-based model of TEM across polarized LECs, non-migrated Tregs become exTregs. Such conversion is regulated by LTβR nuclear factor κB (NF-κB) signaling in LECs, which increases interleukin-6 (IL-6) production and drives exTreg conversion. Migrating Tregs are ectonucleotidase CD39(hi) and resist exTreg conversion in an adenosine-receptor-2A-dependent fashion. Human Tregs migrating across human LECs behave similarly. These molecular interactions can be targeted for therapeutic manipulation of immunity and suppression. |
format | Online Article Text |
id | pubmed-9093052 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-90930522022-05-11 Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses Saxena, Vikas Piao, Wenji Li, Lushen Paluskievicz, Christina Xiong, Yanbao Simon, Thomas Lakhan, Ram Brinkman, C. Colin Walden, Sarah Hippen, Keli L. WillsonShirkey, Marina Lee, Young S. Wagner, Chelsea Blazar, Bruce R. Bromberg, Jonathan S. Cell Rep Article Regulatory T cell (Treg) lymphatic migration is required for resolving inflammation and prolonging allograft survival. Focusing on Treg interactions with lymphatic endothelial cells (LECs), we dissect mechanisms and functional consequences of Treg transendothelial migration (TEM). Using three genetic mouse models of pancreatic islet transplantation, we show that Treg lymphotoxin (LT) αβ and LEC LTβ receptor (LTβR) signaling are required for efficient Treg migration and suppressive function to prolong allograft survival. Inhibition of LT signaling increases Treg conversion to Foxp3(lo)CD25(lo) exTregs. In a transwell-based model of TEM across polarized LECs, non-migrated Tregs become exTregs. Such conversion is regulated by LTβR nuclear factor κB (NF-κB) signaling in LECs, which increases interleukin-6 (IL-6) production and drives exTreg conversion. Migrating Tregs are ectonucleotidase CD39(hi) and resist exTreg conversion in an adenosine-receptor-2A-dependent fashion. Human Tregs migrating across human LECs behave similarly. These molecular interactions can be targeted for therapeutic manipulation of immunity and suppression. 2022-04-19 /pmc/articles/PMC9093052/ /pubmed/35443187 http://dx.doi.org/10.1016/j.celrep.2022.110727 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Saxena, Vikas Piao, Wenji Li, Lushen Paluskievicz, Christina Xiong, Yanbao Simon, Thomas Lakhan, Ram Brinkman, C. Colin Walden, Sarah Hippen, Keli L. WillsonShirkey, Marina Lee, Young S. Wagner, Chelsea Blazar, Bruce R. Bromberg, Jonathan S. Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses |
title | Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses |
title_full | Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses |
title_fullStr | Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses |
title_full_unstemmed | Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses |
title_short | Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses |
title_sort | treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9093052/ https://www.ncbi.nlm.nih.gov/pubmed/35443187 http://dx.doi.org/10.1016/j.celrep.2022.110727 |
work_keys_str_mv | AT saxenavikas tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses AT piaowenji tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses AT lilushen tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses AT paluskieviczchristina tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses AT xiongyanbao tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses AT simonthomas tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses AT lakhanram tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses AT brinkmanccolin tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses AT waldensarah tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses AT hippenkelil tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses AT willsonshirkeymarina tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses AT leeyoungs tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses AT wagnerchelsea tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses AT blazarbrucer tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses AT brombergjonathans tregtissuestabilitydependsonlymphotoxinbetareceptorandadenosinereceptordrivenlymphaticendothelialcellresponses |