Cargando…
Δ-Quantum machine-learning for medicinal chemistry
Many molecular design tasks benefit from fast and accurate calculations of quantum-mechanical (QM) properties. However, the computational cost of QM methods applied to drug-like molecules currently renders large-scale applications of quantum chemistry challenging. Aiming to mitigate this problem, we...
Autores principales: | Atz, Kenneth, Isert, Clemens, Böcker, Markus N. A., Jiménez-Luna, José, Schneider, Gisbert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9093086/ https://www.ncbi.nlm.nih.gov/pubmed/35470831 http://dx.doi.org/10.1039/d2cp00834c |
Ejemplares similares
-
QMugs, quantum mechanical properties of drug-like molecules
por: Isert, Clemens, et al.
Publicado: (2022) -
Machine Learning
for Fast, Quantum Mechanics-Based
Approximation of Drug Lipophilicity
por: Isert, Clemens, et al.
Publicado: (2023) -
Extracting medicinal chemistry intuition via preference machine learning
por: Choung, Oh-Hyeon, et al.
Publicado: (2023) -
Identifying opportunities for late-stage C-H alkylation with high-throughput experimentation and in silico reaction screening
por: Nippa, David F., et al.
Publicado: (2023) -
Δ(2) machine learning for reaction property prediction
por: Zhao, Qiyuan, et al.
Publicado: (2023)