Cargando…

Visualizing the gas channel of a monofunctional carbon monoxide dehydrogenase

Carbon monoxide dehydrogenase (CODH) plays an important role in the processing of the one-carbon gases carbon monoxide and carbon dioxide. In CODH enzymes, these gases are channeled to and from the Ni-Fe-S active sites using hydrophobic cavities. In this work, we investigate these gas channels in a...

Descripción completa

Detalles Bibliográficos
Autores principales: Biester, Alison, Dementin, Sébastien, Drennan, Catherine L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9093221/
https://www.ncbi.nlm.nih.gov/pubmed/35278753
http://dx.doi.org/10.1016/j.jinorgbio.2022.111774
Descripción
Sumario:Carbon monoxide dehydrogenase (CODH) plays an important role in the processing of the one-carbon gases carbon monoxide and carbon dioxide. In CODH enzymes, these gases are channeled to and from the Ni-Fe-S active sites using hydrophobic cavities. In this work, we investigate these gas channels in a monofunctional CODH from Desulfovibrio vulgaris, which is unusual among CODHs for its oxygen-tolerance. By pressurizing D. vulgaris CODH protein crystals with xenon and solving the structure to 2.10 Å resolution, we identify 12 xenon sites per CODH monomer, thereby elucidating hydrophobic gas channels. We find that D. vulgaris CODH has one gas channel that has not been experimentally validated previously in a CODH, and a second channel that is shared with Moorella thermoacetica carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS). This experimental visualization of D. vulgaris CODH gas channels lays groundwork for further exploration of factors contributing to oxygen-tolerance in this CODH, as well as study of channels in other CODHs. We dedicate this publication to the memory of Dick Holm, whose early studies of the Ni-Fe-S clusters of CODH inspired us all.