Cargando…
Estimating High-Order Brain Functional Networks in Bayesian View for Autism Spectrum Disorder Identification
Brain functional network (BFN) has become an increasingly important tool to understand the inherent organization of the brain and explore informative biomarkers of neurological disorders. Pearson’s correlation (PC) is the most widely accepted method for constructing BFNs and provides a basis for des...
Autores principales: | Jiang, Xiao, Zhou, Yueying, Zhang, Yining, Zhang, Limei, Qiao, Lishan, De Leone, Renato |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9094041/ https://www.ncbi.nlm.nih.gov/pubmed/35573311 http://dx.doi.org/10.3389/fnins.2022.872848 |
Ejemplares similares
-
Remodeling Pearson's Correlation for Functional Brain Network Estimation and Autism Spectrum Disorder Identification
por: Li, Weikai, et al.
Publicado: (2017) -
Simultaneous Estimation of Low- and High-Order Functional Connectivity for Identifying Mild Cognitive Impairment
por: Zhou, Yueying, et al.
Publicado: (2018) -
Estimating Brain Functional Networks Based on Adaptively-Weighted fMRI Signals for MCI Identification
por: Chen, Huihui, et al.
Publicado: (2021) -
Improving Sparsity and Modularity of High-Order Functional Connectivity Networks for MCI and ASD Identification
por: Zhou, Yueying, et al.
Publicado: (2018) -
Brain Function Network: Higher Order vs. More Discrimination
por: Guo, Tingting, et al.
Publicado: (2021)