Cargando…
Toward Precise Localization of Abnormal Brain Activity: 1D CNN on Single Voxel fMRI Time-Series
Functional magnetic resonance imaging (fMRI) is one of the best techniques for precise localization of abnormal brain activity non-invasively. Machine-learning approaches have been widely used in neuroimaging studies; however, few studies have investigated the single-voxel modeling of fMRI data unde...
Autores principales: | Wu, Yun-Ying, Hu, Yun-Song, Wang, Jue, Zang, Yu-Feng, Zhang, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9094401/ https://www.ncbi.nlm.nih.gov/pubmed/35573265 http://dx.doi.org/10.3389/fncom.2022.822237 |
Ejemplares similares
-
Intra- and Inter-Scanner Reliability of Voxel-Wise Whole-Brain Analytic Metrics for Resting State fMRI
por: Zhao, Na, et al.
Publicado: (2018) -
Multi-voxel pattern analysis (MVPA) reveals abnormal fMRI activity in both the “core” and “extended” face network in congenital prosopagnosia
por: Rivolta, Davide, et al.
Publicado: (2014) -
Test-retest reliability of peak location in the sensorimotor network of resting state fMRI for potential rTMS targets
por: Hu, Yun-Song, et al.
Publicado: (2022) -
The Local Brain Abnormalities in Patients With Transient Ischemic Attack: A Resting-State fMRI Study
por: Lv, Yating, et al.
Publicado: (2019) -
Using Informational Connectivity to Measure the Synchronous Emergence of fMRI Multi-voxel Information Across Time
por: Coutanche, Marc N., et al.
Publicado: (2014)