Cargando…
Enhanced Performance by Interpretable Low-Frequency Electroencephalogram Oscillations in the Machine Learning-Based Diagnosis of Post-traumatic Stress Disorder
Electroencephalography (EEG)-based diagnosis of psychiatric diseases using machine-learning approaches has made possible the objective diagnosis of various psychiatric diseases. The objective of this study was to improve the performance of a resting-state EEG-based computer-aided diagnosis (CAD) sys...
Autores principales: | Shim, Miseon, Im, Chang-Hwan, Lee, Seung-Hwan, Hwang, Han-Jeong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9094422/ https://www.ncbi.nlm.nih.gov/pubmed/35571868 http://dx.doi.org/10.3389/fninf.2022.811756 |
Ejemplares similares
-
Impaired functional cortical networks in the theta frequency band of patients with post-traumatic stress disorder during auditory-cognitive processing
por: Shim, Miseon, et al.
Publicado: (2022) -
Altered cortical functional network in major depressive disorder: A resting-state electroencephalogram study
por: Shim, Miseon, et al.
Publicado: (2018) -
Machine-learning-based classification between post-traumatic stress disorder and major depressive disorder using P300 features
por: Shim, Miseon, et al.
Publicado: (2019) -
Editorial: AI-Based Computer-Aided Diagnosis and Prognosis for Psychiatric Disorders
por: Shim, Miseon, et al.
Publicado: (2022) -
Estimation of Symptom Severity Scores for Patients with Schizophrenia Using ERP Source Activations during a Facial Affect Discrimination Task
por: Kim, Do-Won, et al.
Publicado: (2017)