Cargando…

Proteomics and metabolomics combined study on endopathic changes of water‐soluble precursors in Tan lamb during postmortem aging

Tan lamb is highly recommended breed in China. It is of great significance to understand the underlying mechanism of how water‐soluble flavor precursors metabolize in Tan lamb muscles during the postmortem aging period. In this study, we investigated the muscle pH, lactate dehydrogenase (LDH) activi...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Chen, You, Liqin, Luo, Ruiming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9094463/
https://www.ncbi.nlm.nih.gov/pubmed/35592284
http://dx.doi.org/10.1002/fsn3.2780
Descripción
Sumario:Tan lamb is highly recommended breed in China. It is of great significance to understand the underlying mechanism of how water‐soluble flavor precursors metabolize in Tan lamb muscles during the postmortem aging period. In this study, we investigated the muscle pH, lactate dehydrogenase (LDH) activity, and the variations in water‐soluble flavor‐related metabolites. The proteome changes were profiled to provide insights into the biochemical changes affecting accumulation of water‐soluble flavor precursors in different aging stages (days 0, 4, and 8). The results indicated that pH value considerably decreased from day 0 to day 4, and increased from day 4 to day 8 (p < .05). The activity of LDH significantly increased from day 0 to day 4, and decreased from day 4 to day 8 (p < .05). Postmortem glycolysis was activated in 4 days, which directly affected the variations in metabolic enzymes and triggered the accumulation of flavor‐related carbohydrates. The free amino acids accumulated due to hydrolysis of structural proteins, with 3‐hydroxy‐L‐proline, aspartic acid, and methionine increasing from day 0 to day 4, and aspartic acid, serine, threonine, tyrosine, phenylalanine, and D‐phenylalanine from day 4 to day 8. The inosine and hypoxanthine accumulated due to the degradation of ATP. The results of the present study provide insightful information, revealing the differences in biochemical attributes in Tan lamb muscles caused by postmortem aging.