Cargando…
Covariate adjustment of spirometric and smoking phenotypes: The potential of neural network models
To increase power and minimize bias in statistical analyses, quantitative outcomes are often adjusted for precision and confounding variables using standard regression approaches. The outcome is modeled as a linear function of the precision variables and confounders; however, for many complex phenot...
Autores principales: | Voorhies, Kirsten, Bie, Ruofan, Hokanson, John E., Weiss, Scott T., Chen Wu, Ann, Hecker, Julian, Hahn, Georg, Demeo, Dawn L., Silverman, Edwin, Cho, Michael H., Lange, Christoph, Lutz, Sharon M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9094505/ https://www.ncbi.nlm.nih.gov/pubmed/35544468 http://dx.doi.org/10.1371/journal.pone.0266752 |
Ejemplares similares
-
A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables
por: Hecker, Julian, et al.
Publicado: (2022) -
A genome-wide association study identifies risk loci for spirometric measures among smokers of European and African ancestry
por: Lutz, Sharon M., et al.
Publicado: (2015) -
Sex-specific associations with DNA methylation in lung tissue demonstrate smoking interactions
por: Koo, Hyeon-Kyoung, et al.
Publicado: (2020) -
The Challenges of Spirometric Diagnosis of COPD
por: Maldonado-Franco, Adriana, et al.
Publicado: (2023) -
Should adjustment for covariates be used in prevalence estimations?
por: Li, Wenjun, et al.
Publicado: (2008)