Cargando…

On Multimatrix Models Motivated by Random Noncommutative Geometry II: A Yang-Mills-Higgs Matrix Model

We continue the study of fuzzy geometries inside Connes’ spectral formalism and their relation to multimatrix models. In this companion paper to Pérez-Sánchez (Ann Henri Poincaré 22:3095–3148, 2021, arXiv:2007.10914), we propose a gauge theory setting based on noncommutative geometry, which—just as...

Descripción completa

Detalles Bibliográficos
Autor principal: Perez-Sanchez, Carlos I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095567/
https://www.ncbi.nlm.nih.gov/pubmed/35573816
http://dx.doi.org/10.1007/s00023-021-01138-w
Descripción
Sumario:We continue the study of fuzzy geometries inside Connes’ spectral formalism and their relation to multimatrix models. In this companion paper to Pérez-Sánchez (Ann Henri Poincaré 22:3095–3148, 2021, arXiv:2007.10914), we propose a gauge theory setting based on noncommutative geometry, which—just as the traditional formulation in terms of almost-commutative manifolds—has the ability to also accommodate a Higgs field. However, in contrast to ‘almost-commutative manifolds’, the present framework, which we call gauge matrix spectral triples, employs only finite-dimensional algebras. In a path-integral quantization approach to the Spectral Action, this allows to state Yang–Mills–Higgs theory (on four-dimensional Euclidean fuzzy space) as an explicit random multimatrix model obtained here, whose matrix fields exactly mirror those of the Yang–Mills–Higgs theory on a smooth manifold.