Cargando…

Cerebral proliferative angiopathy depicted by four-dimensional computed tomographic angiography: A case report

Cerebral proliferative angiopathy is a rare cerebrovascular disorder characterized by diffuse abnormal vessels with intermingled brain parenchyma fed by many arteries and draining into many veins without high-flow arteriovenous shunts, which is usually confirmed by conventional digital subtraction a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ito, Shuichi, Kanagaki, Mitsunori, Yoshimoto, Naoya, Hijikata, Yoichiro, Shimizu, Marina, Kimura, Hiroyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095649/
https://www.ncbi.nlm.nih.gov/pubmed/35570862
http://dx.doi.org/10.1016/j.radcr.2022.03.104
Descripción
Sumario:Cerebral proliferative angiopathy is a rare cerebrovascular disorder characterized by diffuse abnormal vessels with intermingled brain parenchyma fed by many arteries and draining into many veins without high-flow arteriovenous shunts, which is usually confirmed by conventional digital subtraction angiography. However, dilution of the contrast medium due to the markedly increased blood flow and volume in cerebral proliferative angiopathy leads to low-contrast angiography. We report a 53-year-old man with cerebral proliferative angiopathy who underwent CT, MR imaging, MR angiography, digital subtraction angiography and 4D-CTA. The 4D-CTA exhibited abnormal vessels without early venous filling between the atrophic brain parenchyma in higher contrast than the angiography due to high spatial and time resolution, whereas the left external carotid angiography visualized the characteristic transdural supply more clearly than the 4D-CTA due to high vascular selectivity. Therefore, novel 4D-CTA and conventional angiography plays a complementary role in the accurate diagnosis of cerebral proliferative angiopathy. Taking invasiveness into account, 4D-CTA may be advantageous for the diagnosis of cerebral proliferative angiopathy based on the characteristic imaging findings.