Cargando…
Reef larval recruitment in response to seascape dynamics in the SW Atlantic
Advances in satellite observation have improved our capacity to track changes in the ocean with numerous ecological and conservation applications, which are yet under-explored for coastal ecology. In this study, we assessed the spatio-temporal dynamics in invertebrate larval recruitment and the Seas...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095688/ https://www.ncbi.nlm.nih.gov/pubmed/35546605 http://dx.doi.org/10.1038/s41598-022-11809-1 |
Sumario: | Advances in satellite observation have improved our capacity to track changes in the ocean with numerous ecological and conservation applications, which are yet under-explored for coastal ecology. In this study, we assessed the spatio-temporal dynamics in invertebrate larval recruitment and the Seascape Pelagic Habitat Classification, a satellite remote-sensing product developed by the Marine Biodiversity Observation Network (MBON) and delivered by the US National Oceanic and Atmospheric Administration to monitor biodiversity globally. Our ultimate goal was to identify and predict changes in coastal benthic assemblages at tropical reefs in the SW Atlantic based on integrated pelagic conditions, testing the use of MBON Seascape categorization. Our results revealed that the pelagic Seascapes correlated with monthly and seasonal variations in recruitment rates and assemblage composition. Recruitment was strongly influenced by subtropical Seascapes and was reduced by the presence of warm waters with high-nutrient contents and phytoplankton blooms, which are likely to affect reef communities in the long term. Recruitment modeling indicates that Seascapes may be more efficient than sea surface temperature in predicting benthic larval dynamics. Based on historical Seascape patterns, we identified seven events that may have impacted benthic recruitment in this region during the last decades. These findings provide new insights into the application of novel satellite remote-sensing Seascape categorizations in benthic ecology and evidence how reef larval supply in the SW Atlantic could be impacted by recent and future ocean changes. |
---|