Cargando…
Three-dimensional shape and deformation measurement on complex structure parts
Stereo digital image correlation technique (stereo-DIC or 3D-DIC) has been widely used in three-dimensional (3D) shape and deformation measurement due to its high accuracy and flexibility. But it is a tough task for it to deal with complex structure components because of the severe perspective disto...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095710/ https://www.ncbi.nlm.nih.gov/pubmed/35545639 http://dx.doi.org/10.1038/s41598-022-11702-x |
_version_ | 1784705816890179584 |
---|---|
author | Wu, Zhoujie Guo, Wenbo Chen, Zhengdong Wang, Haoran Li, Xunren Zhang, Qican |
author_facet | Wu, Zhoujie Guo, Wenbo Chen, Zhengdong Wang, Haoran Li, Xunren Zhang, Qican |
author_sort | Wu, Zhoujie |
collection | PubMed |
description | Stereo digital image correlation technique (stereo-DIC or 3D-DIC) has been widely used in three-dimensional (3D) shape and deformation measurement due to its high accuracy and flexibility. But it is a tough task for it to deal with complex structure components because of the severe perspective distortion in two views. This paper seeks to resolve this issue using a single-camera system based on DIC-assisted fringe projection profilometry (FPP). A pixel-wise and complete 3D geometry of complex structures can be reconstructed using the robust and efficient Gray-coded method based on a FPP system. And then, DIC is just used to perform the temporal matching and complete full-field pixel-to-pixel tracking. The in- and out-of-plane deformation are obtained at the same time by directly comparing the accurate and complete 3D data of each corresponding pixel. Speckle pattern design and fringe denoising methods are carefully compared and chosen to simultaneously guarantee the measuring accuracy of 3D shape and deformation. Experimental results demonstrate the proposed method is an effective means to achieve full-field 3D shape and deformation measurement on complex parts, such as honeycomb structure and braided composite tube, which are challenging and even impossible for the traditional stereo-DIC method. |
format | Online Article Text |
id | pubmed-9095710 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-90957102022-05-13 Three-dimensional shape and deformation measurement on complex structure parts Wu, Zhoujie Guo, Wenbo Chen, Zhengdong Wang, Haoran Li, Xunren Zhang, Qican Sci Rep Article Stereo digital image correlation technique (stereo-DIC or 3D-DIC) has been widely used in three-dimensional (3D) shape and deformation measurement due to its high accuracy and flexibility. But it is a tough task for it to deal with complex structure components because of the severe perspective distortion in two views. This paper seeks to resolve this issue using a single-camera system based on DIC-assisted fringe projection profilometry (FPP). A pixel-wise and complete 3D geometry of complex structures can be reconstructed using the robust and efficient Gray-coded method based on a FPP system. And then, DIC is just used to perform the temporal matching and complete full-field pixel-to-pixel tracking. The in- and out-of-plane deformation are obtained at the same time by directly comparing the accurate and complete 3D data of each corresponding pixel. Speckle pattern design and fringe denoising methods are carefully compared and chosen to simultaneously guarantee the measuring accuracy of 3D shape and deformation. Experimental results demonstrate the proposed method is an effective means to achieve full-field 3D shape and deformation measurement on complex parts, such as honeycomb structure and braided composite tube, which are challenging and even impossible for the traditional stereo-DIC method. Nature Publishing Group UK 2022-05-11 /pmc/articles/PMC9095710/ /pubmed/35545639 http://dx.doi.org/10.1038/s41598-022-11702-x Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Wu, Zhoujie Guo, Wenbo Chen, Zhengdong Wang, Haoran Li, Xunren Zhang, Qican Three-dimensional shape and deformation measurement on complex structure parts |
title | Three-dimensional shape and deformation measurement on complex structure parts |
title_full | Three-dimensional shape and deformation measurement on complex structure parts |
title_fullStr | Three-dimensional shape and deformation measurement on complex structure parts |
title_full_unstemmed | Three-dimensional shape and deformation measurement on complex structure parts |
title_short | Three-dimensional shape and deformation measurement on complex structure parts |
title_sort | three-dimensional shape and deformation measurement on complex structure parts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095710/ https://www.ncbi.nlm.nih.gov/pubmed/35545639 http://dx.doi.org/10.1038/s41598-022-11702-x |
work_keys_str_mv | AT wuzhoujie threedimensionalshapeanddeformationmeasurementoncomplexstructureparts AT guowenbo threedimensionalshapeanddeformationmeasurementoncomplexstructureparts AT chenzhengdong threedimensionalshapeanddeformationmeasurementoncomplexstructureparts AT wanghaoran threedimensionalshapeanddeformationmeasurementoncomplexstructureparts AT lixunren threedimensionalshapeanddeformationmeasurementoncomplexstructureparts AT zhangqican threedimensionalshapeanddeformationmeasurementoncomplexstructureparts |