Cargando…
Neural sampling machine with stochastic synapse allows brain-like learning and inference
Many real-world mission-critical applications require continual online learning from noisy data and real-time decision making with a defined confidence level. Brain-inspired probabilistic models of neural network can explicitly handle the uncertainty in data and allow adaptive learning on the fly. H...
Autores principales: | Dutta, Sourav, Detorakis, Georgios, Khanna, Abhishek, Grisafe, Benjamin, Neftci, Emre, Datta, Suman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095718/ https://www.ncbi.nlm.nih.gov/pubmed/35546144 http://dx.doi.org/10.1038/s41467-022-30305-8 |
Ejemplares similares
-
Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines
por: Neftci, Emre O., et al.
Publicado: (2016) -
Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines
por: Neftci, Emre O., et al.
Publicado: (2017) -
Programmable coupled oscillators for synchronized locomotion
por: Dutta, Sourav, et al.
Publicado: (2019) -
Neural and Synaptic Array Transceiver: A Brain-Inspired Computing Framework for Embedded Learning
por: Detorakis, Georgios, et al.
Publicado: (2018) -
Stochastic Resonance in Insulator-Metal-Transition Systems
por: Bhar, Bitan, et al.
Publicado: (2020)