Cargando…
Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness
BACKGROUND: Diffusion‐weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease. PURPOSE: To compare 14 site‐specific parametric fitting implementations applied to the same dataset of whole‐mount pathological...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095769/ https://www.ncbi.nlm.nih.gov/pubmed/34767682 http://dx.doi.org/10.1002/jmri.27983 |
_version_ | 1784705826712190976 |
---|---|
author | McGarry, Sean D. Brehler, Michael Bukowy, John D. Lowman, Allison K. Bobholz, Samuel A. Duenweg, Savannah R. Banerjee, Anjishnu Hurrell, Sarah L. Malyarenko, Dariya Chenevert, Thomas L. Cao, Yue Li, Yuan You, Daekeun Fedorov, Andrey Bell, Laura C. Quarles, C. Chad Prah, Melissa A. Schmainda, Kathleen M. Taouli, Bachir LoCastro, Eve Mazaheri, Yousef Shukla‐Dave, Amita Yankeelov, Thomas E. Hormuth, David A. Madhuranthakam, Ananth J. Hulsey, Keith Li, Kurt Huang, Wei Huang, Wei Muzi, Mark Jacobs, Michael A. Solaiyappan, Meiyappan Hectors, Stefanie Antic, Tatjana Paner, Gladell P. Palangmonthip, Watchareepohn Jacobsohn, Kenneth Hohenwalter, Mark Duvnjak, Petar Griffin, Michael See, William Nevalainen, Marja T. Iczkowski, Kenneth A. LaViolette, Peter S. |
author_facet | McGarry, Sean D. Brehler, Michael Bukowy, John D. Lowman, Allison K. Bobholz, Samuel A. Duenweg, Savannah R. Banerjee, Anjishnu Hurrell, Sarah L. Malyarenko, Dariya Chenevert, Thomas L. Cao, Yue Li, Yuan You, Daekeun Fedorov, Andrey Bell, Laura C. Quarles, C. Chad Prah, Melissa A. Schmainda, Kathleen M. Taouli, Bachir LoCastro, Eve Mazaheri, Yousef Shukla‐Dave, Amita Yankeelov, Thomas E. Hormuth, David A. Madhuranthakam, Ananth J. Hulsey, Keith Li, Kurt Huang, Wei Huang, Wei Muzi, Mark Jacobs, Michael A. Solaiyappan, Meiyappan Hectors, Stefanie Antic, Tatjana Paner, Gladell P. Palangmonthip, Watchareepohn Jacobsohn, Kenneth Hohenwalter, Mark Duvnjak, Petar Griffin, Michael See, William Nevalainen, Marja T. Iczkowski, Kenneth A. LaViolette, Peter S. |
author_sort | McGarry, Sean D. |
collection | PubMed |
description | BACKGROUND: Diffusion‐weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease. PURPOSE: To compare 14 site‐specific parametric fitting implementations applied to the same dataset of whole‐mount pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms. STUDY TYPE: Prospective. POPULATION: Thirty‐three patients prospectively imaged prior to prostatectomy. FIELD STRENGTH/SEQUENCE: 3 T, field‐of‐view optimized and constrained undistorted single‐shot DWI sequence. ASSESSMENT: Datasets, including a noise‐free digital reference object (DRO), were distributed to the 14 teams, where locally implemented DWI parameter maps were calculated, including mono‐exponential apparent diffusion coefficient (MEADC), kurtosis (K), diffusion kurtosis (DK), bi‐exponential diffusion (BID), pseudo‐diffusion (BID*), and perfusion fraction (F). The resulting parametric maps were centrally analyzed, where differentiation of benign from cancerous tissue was compared between DWI parameters and the fitting algorithms with a receiver operating characteristic area under the curve (ROC AUC). STATISTICAL TEST: Levene's test, P < 0.05 corrected for multiple comparisons was considered statistically significant. RESULTS: The DRO results indicated minimal discordance between sites. Comparison across sites indicated that K, DK, and MEADC had significantly higher prostate cancer detection capability (AUC range = 0.72–0.76, 0.76–0.81, and 0.76–0.80 respectively) as compared to bi‐exponential parameters (BID, BID*, F) which had lower AUC and greater between site variation (AUC range = 0.53–0.80, 0.51–0.81, and 0.52–0.80 respectively). Post‐processing parameters also affected the resulting AUC, moving from, for example, 0.75 to 0.87 for MEADC varying cluster size. DATA CONCLUSION: We found that conventional diffusion models had consistent performance at differentiating prostate cancer from benign tissue. Our results also indicated that post‐processing decisions on DWI data can affect sensitivity and specificity when applied to radiological–pathological studies in prostate cancer. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3 |
format | Online Article Text |
id | pubmed-9095769 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-90957692022-10-14 Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness McGarry, Sean D. Brehler, Michael Bukowy, John D. Lowman, Allison K. Bobholz, Samuel A. Duenweg, Savannah R. Banerjee, Anjishnu Hurrell, Sarah L. Malyarenko, Dariya Chenevert, Thomas L. Cao, Yue Li, Yuan You, Daekeun Fedorov, Andrey Bell, Laura C. Quarles, C. Chad Prah, Melissa A. Schmainda, Kathleen M. Taouli, Bachir LoCastro, Eve Mazaheri, Yousef Shukla‐Dave, Amita Yankeelov, Thomas E. Hormuth, David A. Madhuranthakam, Ananth J. Hulsey, Keith Li, Kurt Huang, Wei Huang, Wei Muzi, Mark Jacobs, Michael A. Solaiyappan, Meiyappan Hectors, Stefanie Antic, Tatjana Paner, Gladell P. Palangmonthip, Watchareepohn Jacobsohn, Kenneth Hohenwalter, Mark Duvnjak, Petar Griffin, Michael See, William Nevalainen, Marja T. Iczkowski, Kenneth A. LaViolette, Peter S. J Magn Reson Imaging Research Articles BACKGROUND: Diffusion‐weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease. PURPOSE: To compare 14 site‐specific parametric fitting implementations applied to the same dataset of whole‐mount pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms. STUDY TYPE: Prospective. POPULATION: Thirty‐three patients prospectively imaged prior to prostatectomy. FIELD STRENGTH/SEQUENCE: 3 T, field‐of‐view optimized and constrained undistorted single‐shot DWI sequence. ASSESSMENT: Datasets, including a noise‐free digital reference object (DRO), were distributed to the 14 teams, where locally implemented DWI parameter maps were calculated, including mono‐exponential apparent diffusion coefficient (MEADC), kurtosis (K), diffusion kurtosis (DK), bi‐exponential diffusion (BID), pseudo‐diffusion (BID*), and perfusion fraction (F). The resulting parametric maps were centrally analyzed, where differentiation of benign from cancerous tissue was compared between DWI parameters and the fitting algorithms with a receiver operating characteristic area under the curve (ROC AUC). STATISTICAL TEST: Levene's test, P < 0.05 corrected for multiple comparisons was considered statistically significant. RESULTS: The DRO results indicated minimal discordance between sites. Comparison across sites indicated that K, DK, and MEADC had significantly higher prostate cancer detection capability (AUC range = 0.72–0.76, 0.76–0.81, and 0.76–0.80 respectively) as compared to bi‐exponential parameters (BID, BID*, F) which had lower AUC and greater between site variation (AUC range = 0.53–0.80, 0.51–0.81, and 0.52–0.80 respectively). Post‐processing parameters also affected the resulting AUC, moving from, for example, 0.75 to 0.87 for MEADC varying cluster size. DATA CONCLUSION: We found that conventional diffusion models had consistent performance at differentiating prostate cancer from benign tissue. Our results also indicated that post‐processing decisions on DWI data can affect sensitivity and specificity when applied to radiological–pathological studies in prostate cancer. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3 John Wiley & Sons, Inc. 2021-11-12 2022-06 /pmc/articles/PMC9095769/ /pubmed/34767682 http://dx.doi.org/10.1002/jmri.27983 Text en © 2021 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Articles McGarry, Sean D. Brehler, Michael Bukowy, John D. Lowman, Allison K. Bobholz, Samuel A. Duenweg, Savannah R. Banerjee, Anjishnu Hurrell, Sarah L. Malyarenko, Dariya Chenevert, Thomas L. Cao, Yue Li, Yuan You, Daekeun Fedorov, Andrey Bell, Laura C. Quarles, C. Chad Prah, Melissa A. Schmainda, Kathleen M. Taouli, Bachir LoCastro, Eve Mazaheri, Yousef Shukla‐Dave, Amita Yankeelov, Thomas E. Hormuth, David A. Madhuranthakam, Ananth J. Hulsey, Keith Li, Kurt Huang, Wei Huang, Wei Muzi, Mark Jacobs, Michael A. Solaiyappan, Meiyappan Hectors, Stefanie Antic, Tatjana Paner, Gladell P. Palangmonthip, Watchareepohn Jacobsohn, Kenneth Hohenwalter, Mark Duvnjak, Petar Griffin, Michael See, William Nevalainen, Marja T. Iczkowski, Kenneth A. LaViolette, Peter S. Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness |
title | Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness |
title_full | Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness |
title_fullStr | Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness |
title_full_unstemmed | Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness |
title_short | Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness |
title_sort | multi‐site concordance of diffusion‐weighted imaging quantification for assessing prostate cancer aggressiveness |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095769/ https://www.ncbi.nlm.nih.gov/pubmed/34767682 http://dx.doi.org/10.1002/jmri.27983 |
work_keys_str_mv | AT mcgarryseand multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT brehlermichael multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT bukowyjohnd multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT lowmanallisonk multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT bobholzsamuela multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT duenwegsavannahr multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT banerjeeanjishnu multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT hurrellsarahl multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT malyarenkodariya multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT chenevertthomasl multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT caoyue multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT liyuan multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT youdaekeun multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT fedorovandrey multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT belllaurac multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT quarlescchad multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT prahmelissaa multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT schmaindakathleenm multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT taoulibachir multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT locastroeve multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT mazaheriyousef multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT shukladaveamita multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT yankeelovthomase multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT hormuthdavida multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT madhuranthakamananthj multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT hulseykeith multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT likurt multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT huangwei multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT huangwei multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT muzimark multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT jacobsmichaela multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT solaiyappanmeiyappan multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT hectorsstefanie multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT antictatjana multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT panergladellp multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT palangmonthipwatchareepohn multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT jacobsohnkenneth multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT hohenwaltermark multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT duvnjakpetar multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT griffinmichael multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT seewilliam multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT nevalainenmarjat multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT iczkowskikennetha multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness AT laviolettepeters multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness |