Cargando…

Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness

BACKGROUND: Diffusion‐weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease. PURPOSE: To compare 14 site‐specific parametric fitting implementations applied to the same dataset of whole‐mount pathological...

Descripción completa

Detalles Bibliográficos
Autores principales: McGarry, Sean D., Brehler, Michael, Bukowy, John D., Lowman, Allison K., Bobholz, Samuel A., Duenweg, Savannah R., Banerjee, Anjishnu, Hurrell, Sarah L., Malyarenko, Dariya, Chenevert, Thomas L., Cao, Yue, Li, Yuan, You, Daekeun, Fedorov, Andrey, Bell, Laura C., Quarles, C. Chad, Prah, Melissa A., Schmainda, Kathleen M., Taouli, Bachir, LoCastro, Eve, Mazaheri, Yousef, Shukla‐Dave, Amita, Yankeelov, Thomas E., Hormuth, David A., Madhuranthakam, Ananth J., Hulsey, Keith, Li, Kurt, Huang, Wei, Muzi, Mark, Jacobs, Michael A., Solaiyappan, Meiyappan, Hectors, Stefanie, Antic, Tatjana, Paner, Gladell P., Palangmonthip, Watchareepohn, Jacobsohn, Kenneth, Hohenwalter, Mark, Duvnjak, Petar, Griffin, Michael, See, William, Nevalainen, Marja T., Iczkowski, Kenneth A., LaViolette, Peter S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095769/
https://www.ncbi.nlm.nih.gov/pubmed/34767682
http://dx.doi.org/10.1002/jmri.27983
_version_ 1784705826712190976
author McGarry, Sean D.
Brehler, Michael
Bukowy, John D.
Lowman, Allison K.
Bobholz, Samuel A.
Duenweg, Savannah R.
Banerjee, Anjishnu
Hurrell, Sarah L.
Malyarenko, Dariya
Chenevert, Thomas L.
Cao, Yue
Li, Yuan
You, Daekeun
Fedorov, Andrey
Bell, Laura C.
Quarles, C. Chad
Prah, Melissa A.
Schmainda, Kathleen M.
Taouli, Bachir
LoCastro, Eve
Mazaheri, Yousef
Shukla‐Dave, Amita
Yankeelov, Thomas E.
Hormuth, David A.
Madhuranthakam, Ananth J.
Hulsey, Keith
Li, Kurt
Huang, Wei
Huang, Wei
Muzi, Mark
Jacobs, Michael A.
Solaiyappan, Meiyappan
Hectors, Stefanie
Antic, Tatjana
Paner, Gladell P.
Palangmonthip, Watchareepohn
Jacobsohn, Kenneth
Hohenwalter, Mark
Duvnjak, Petar
Griffin, Michael
See, William
Nevalainen, Marja T.
Iczkowski, Kenneth A.
LaViolette, Peter S.
author_facet McGarry, Sean D.
Brehler, Michael
Bukowy, John D.
Lowman, Allison K.
Bobholz, Samuel A.
Duenweg, Savannah R.
Banerjee, Anjishnu
Hurrell, Sarah L.
Malyarenko, Dariya
Chenevert, Thomas L.
Cao, Yue
Li, Yuan
You, Daekeun
Fedorov, Andrey
Bell, Laura C.
Quarles, C. Chad
Prah, Melissa A.
Schmainda, Kathleen M.
Taouli, Bachir
LoCastro, Eve
Mazaheri, Yousef
Shukla‐Dave, Amita
Yankeelov, Thomas E.
Hormuth, David A.
Madhuranthakam, Ananth J.
Hulsey, Keith
Li, Kurt
Huang, Wei
Huang, Wei
Muzi, Mark
Jacobs, Michael A.
Solaiyappan, Meiyappan
Hectors, Stefanie
Antic, Tatjana
Paner, Gladell P.
Palangmonthip, Watchareepohn
Jacobsohn, Kenneth
Hohenwalter, Mark
Duvnjak, Petar
Griffin, Michael
See, William
Nevalainen, Marja T.
Iczkowski, Kenneth A.
LaViolette, Peter S.
author_sort McGarry, Sean D.
collection PubMed
description BACKGROUND: Diffusion‐weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease. PURPOSE: To compare 14 site‐specific parametric fitting implementations applied to the same dataset of whole‐mount pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms. STUDY TYPE: Prospective. POPULATION: Thirty‐three patients prospectively imaged prior to prostatectomy. FIELD STRENGTH/SEQUENCE: 3 T, field‐of‐view optimized and constrained undistorted single‐shot DWI sequence. ASSESSMENT: Datasets, including a noise‐free digital reference object (DRO), were distributed to the 14 teams, where locally implemented DWI parameter maps were calculated, including mono‐exponential apparent diffusion coefficient (MEADC), kurtosis (K), diffusion kurtosis (DK), bi‐exponential diffusion (BID), pseudo‐diffusion (BID*), and perfusion fraction (F). The resulting parametric maps were centrally analyzed, where differentiation of benign from cancerous tissue was compared between DWI parameters and the fitting algorithms with a receiver operating characteristic area under the curve (ROC AUC). STATISTICAL TEST: Levene's test, P < 0.05 corrected for multiple comparisons was considered statistically significant. RESULTS: The DRO results indicated minimal discordance between sites. Comparison across sites indicated that K, DK, and MEADC had significantly higher prostate cancer detection capability (AUC range = 0.72–0.76, 0.76–0.81, and 0.76–0.80 respectively) as compared to bi‐exponential parameters (BID, BID*, F) which had lower AUC and greater between site variation (AUC range = 0.53–0.80, 0.51–0.81, and 0.52–0.80 respectively). Post‐processing parameters also affected the resulting AUC, moving from, for example, 0.75 to 0.87 for MEADC varying cluster size. DATA CONCLUSION: We found that conventional diffusion models had consistent performance at differentiating prostate cancer from benign tissue. Our results also indicated that post‐processing decisions on DWI data can affect sensitivity and specificity when applied to radiological–pathological studies in prostate cancer. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3
format Online
Article
Text
id pubmed-9095769
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-90957692022-10-14 Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness McGarry, Sean D. Brehler, Michael Bukowy, John D. Lowman, Allison K. Bobholz, Samuel A. Duenweg, Savannah R. Banerjee, Anjishnu Hurrell, Sarah L. Malyarenko, Dariya Chenevert, Thomas L. Cao, Yue Li, Yuan You, Daekeun Fedorov, Andrey Bell, Laura C. Quarles, C. Chad Prah, Melissa A. Schmainda, Kathleen M. Taouli, Bachir LoCastro, Eve Mazaheri, Yousef Shukla‐Dave, Amita Yankeelov, Thomas E. Hormuth, David A. Madhuranthakam, Ananth J. Hulsey, Keith Li, Kurt Huang, Wei Huang, Wei Muzi, Mark Jacobs, Michael A. Solaiyappan, Meiyappan Hectors, Stefanie Antic, Tatjana Paner, Gladell P. Palangmonthip, Watchareepohn Jacobsohn, Kenneth Hohenwalter, Mark Duvnjak, Petar Griffin, Michael See, William Nevalainen, Marja T. Iczkowski, Kenneth A. LaViolette, Peter S. J Magn Reson Imaging Research Articles BACKGROUND: Diffusion‐weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease. PURPOSE: To compare 14 site‐specific parametric fitting implementations applied to the same dataset of whole‐mount pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms. STUDY TYPE: Prospective. POPULATION: Thirty‐three patients prospectively imaged prior to prostatectomy. FIELD STRENGTH/SEQUENCE: 3 T, field‐of‐view optimized and constrained undistorted single‐shot DWI sequence. ASSESSMENT: Datasets, including a noise‐free digital reference object (DRO), were distributed to the 14 teams, where locally implemented DWI parameter maps were calculated, including mono‐exponential apparent diffusion coefficient (MEADC), kurtosis (K), diffusion kurtosis (DK), bi‐exponential diffusion (BID), pseudo‐diffusion (BID*), and perfusion fraction (F). The resulting parametric maps were centrally analyzed, where differentiation of benign from cancerous tissue was compared between DWI parameters and the fitting algorithms with a receiver operating characteristic area under the curve (ROC AUC). STATISTICAL TEST: Levene's test, P < 0.05 corrected for multiple comparisons was considered statistically significant. RESULTS: The DRO results indicated minimal discordance between sites. Comparison across sites indicated that K, DK, and MEADC had significantly higher prostate cancer detection capability (AUC range = 0.72–0.76, 0.76–0.81, and 0.76–0.80 respectively) as compared to bi‐exponential parameters (BID, BID*, F) which had lower AUC and greater between site variation (AUC range = 0.53–0.80, 0.51–0.81, and 0.52–0.80 respectively). Post‐processing parameters also affected the resulting AUC, moving from, for example, 0.75 to 0.87 for MEADC varying cluster size. DATA CONCLUSION: We found that conventional diffusion models had consistent performance at differentiating prostate cancer from benign tissue. Our results also indicated that post‐processing decisions on DWI data can affect sensitivity and specificity when applied to radiological–pathological studies in prostate cancer. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3 John Wiley & Sons, Inc. 2021-11-12 2022-06 /pmc/articles/PMC9095769/ /pubmed/34767682 http://dx.doi.org/10.1002/jmri.27983 Text en © 2021 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research Articles
McGarry, Sean D.
Brehler, Michael
Bukowy, John D.
Lowman, Allison K.
Bobholz, Samuel A.
Duenweg, Savannah R.
Banerjee, Anjishnu
Hurrell, Sarah L.
Malyarenko, Dariya
Chenevert, Thomas L.
Cao, Yue
Li, Yuan
You, Daekeun
Fedorov, Andrey
Bell, Laura C.
Quarles, C. Chad
Prah, Melissa A.
Schmainda, Kathleen M.
Taouli, Bachir
LoCastro, Eve
Mazaheri, Yousef
Shukla‐Dave, Amita
Yankeelov, Thomas E.
Hormuth, David A.
Madhuranthakam, Ananth J.
Hulsey, Keith
Li, Kurt
Huang, Wei
Huang, Wei
Muzi, Mark
Jacobs, Michael A.
Solaiyappan, Meiyappan
Hectors, Stefanie
Antic, Tatjana
Paner, Gladell P.
Palangmonthip, Watchareepohn
Jacobsohn, Kenneth
Hohenwalter, Mark
Duvnjak, Petar
Griffin, Michael
See, William
Nevalainen, Marja T.
Iczkowski, Kenneth A.
LaViolette, Peter S.
Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness
title Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness
title_full Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness
title_fullStr Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness
title_full_unstemmed Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness
title_short Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness
title_sort multi‐site concordance of diffusion‐weighted imaging quantification for assessing prostate cancer aggressiveness
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095769/
https://www.ncbi.nlm.nih.gov/pubmed/34767682
http://dx.doi.org/10.1002/jmri.27983
work_keys_str_mv AT mcgarryseand multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT brehlermichael multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT bukowyjohnd multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT lowmanallisonk multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT bobholzsamuela multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT duenwegsavannahr multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT banerjeeanjishnu multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT hurrellsarahl multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT malyarenkodariya multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT chenevertthomasl multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT caoyue multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT liyuan multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT youdaekeun multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT fedorovandrey multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT belllaurac multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT quarlescchad multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT prahmelissaa multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT schmaindakathleenm multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT taoulibachir multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT locastroeve multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT mazaheriyousef multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT shukladaveamita multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT yankeelovthomase multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT hormuthdavida multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT madhuranthakamananthj multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT hulseykeith multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT likurt multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT huangwei multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT huangwei multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT muzimark multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT jacobsmichaela multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT solaiyappanmeiyappan multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT hectorsstefanie multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT antictatjana multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT panergladellp multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT palangmonthipwatchareepohn multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT jacobsohnkenneth multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT hohenwaltermark multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT duvnjakpetar multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT griffinmichael multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT seewilliam multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT nevalainenmarjat multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT iczkowskikennetha multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness
AT laviolettepeters multisiteconcordanceofdiffusionweightedimagingquantificationforassessingprostatecanceraggressiveness