Cargando…

Quantification of vascular networks in photoacoustic mesoscopy

Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour vasculature. The visual or semi-quantitative 2D measurements typically applied to mesoscopic PAI data fail to capture the 3D vessel network complexity and lack robust ground truths for assessment of accuracy. Here, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Brown, Emma L., Lefebvre, Thierry L., Sweeney, Paul W., Stolz, Bernadette J., Gröhl, Janek, Hacker, Lina, Huang, Ziqiang, Couturier, Dominique-Laurent, Harrington, Heather A., Byrne, Helen M., Bohndiek, Sarah E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095888/
https://www.ncbi.nlm.nih.gov/pubmed/35574188
http://dx.doi.org/10.1016/j.pacs.2022.100357
_version_ 1784705850823147520
author Brown, Emma L.
Lefebvre, Thierry L.
Sweeney, Paul W.
Stolz, Bernadette J.
Gröhl, Janek
Hacker, Lina
Huang, Ziqiang
Couturier, Dominique-Laurent
Harrington, Heather A.
Byrne, Helen M.
Bohndiek, Sarah E.
author_facet Brown, Emma L.
Lefebvre, Thierry L.
Sweeney, Paul W.
Stolz, Bernadette J.
Gröhl, Janek
Hacker, Lina
Huang, Ziqiang
Couturier, Dominique-Laurent
Harrington, Heather A.
Byrne, Helen M.
Bohndiek, Sarah E.
author_sort Brown, Emma L.
collection PubMed
description Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour vasculature. The visual or semi-quantitative 2D measurements typically applied to mesoscopic PAI data fail to capture the 3D vessel network complexity and lack robust ground truths for assessment of accuracy. Here, we developed a pipeline for quantifying 3D vascular networks captured using mesoscopic PAI and tested the preservation of blood volume and network structure with topological data analysis. Ground truth data of in silico synthetic vasculatures and a string phantom indicated that learning-based segmentation best preserves vessel diameter and blood volume at depth, while rule-based segmentation with vesselness image filtering accurately preserved network structure in superficial vessels. Segmentation of vessels in breast cancer patient-derived xenografts (PDXs) compared favourably to ex vivo immunohistochemistry. Furthermore, our findings underscore the importance of validating segmentation methods when applying mesoscopic PAI as a tool to evaluate vascular networks in vivo.
format Online
Article
Text
id pubmed-9095888
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-90958882022-05-13 Quantification of vascular networks in photoacoustic mesoscopy Brown, Emma L. Lefebvre, Thierry L. Sweeney, Paul W. Stolz, Bernadette J. Gröhl, Janek Hacker, Lina Huang, Ziqiang Couturier, Dominique-Laurent Harrington, Heather A. Byrne, Helen M. Bohndiek, Sarah E. Photoacoustics Research Article Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour vasculature. The visual or semi-quantitative 2D measurements typically applied to mesoscopic PAI data fail to capture the 3D vessel network complexity and lack robust ground truths for assessment of accuracy. Here, we developed a pipeline for quantifying 3D vascular networks captured using mesoscopic PAI and tested the preservation of blood volume and network structure with topological data analysis. Ground truth data of in silico synthetic vasculatures and a string phantom indicated that learning-based segmentation best preserves vessel diameter and blood volume at depth, while rule-based segmentation with vesselness image filtering accurately preserved network structure in superficial vessels. Segmentation of vessels in breast cancer patient-derived xenografts (PDXs) compared favourably to ex vivo immunohistochemistry. Furthermore, our findings underscore the importance of validating segmentation methods when applying mesoscopic PAI as a tool to evaluate vascular networks in vivo. Elsevier 2022-04-20 /pmc/articles/PMC9095888/ /pubmed/35574188 http://dx.doi.org/10.1016/j.pacs.2022.100357 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Brown, Emma L.
Lefebvre, Thierry L.
Sweeney, Paul W.
Stolz, Bernadette J.
Gröhl, Janek
Hacker, Lina
Huang, Ziqiang
Couturier, Dominique-Laurent
Harrington, Heather A.
Byrne, Helen M.
Bohndiek, Sarah E.
Quantification of vascular networks in photoacoustic mesoscopy
title Quantification of vascular networks in photoacoustic mesoscopy
title_full Quantification of vascular networks in photoacoustic mesoscopy
title_fullStr Quantification of vascular networks in photoacoustic mesoscopy
title_full_unstemmed Quantification of vascular networks in photoacoustic mesoscopy
title_short Quantification of vascular networks in photoacoustic mesoscopy
title_sort quantification of vascular networks in photoacoustic mesoscopy
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095888/
https://www.ncbi.nlm.nih.gov/pubmed/35574188
http://dx.doi.org/10.1016/j.pacs.2022.100357
work_keys_str_mv AT brownemmal quantificationofvascularnetworksinphotoacousticmesoscopy
AT lefebvrethierryl quantificationofvascularnetworksinphotoacousticmesoscopy
AT sweeneypaulw quantificationofvascularnetworksinphotoacousticmesoscopy
AT stolzbernadettej quantificationofvascularnetworksinphotoacousticmesoscopy
AT grohljanek quantificationofvascularnetworksinphotoacousticmesoscopy
AT hackerlina quantificationofvascularnetworksinphotoacousticmesoscopy
AT huangziqiang quantificationofvascularnetworksinphotoacousticmesoscopy
AT couturierdominiquelaurent quantificationofvascularnetworksinphotoacousticmesoscopy
AT harringtonheathera quantificationofvascularnetworksinphotoacousticmesoscopy
AT byrnehelenm quantificationofvascularnetworksinphotoacousticmesoscopy
AT bohndieksarahe quantificationofvascularnetworksinphotoacousticmesoscopy