Cargando…
Quantification of vascular networks in photoacoustic mesoscopy
Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour vasculature. The visual or semi-quantitative 2D measurements typically applied to mesoscopic PAI data fail to capture the 3D vessel network complexity and lack robust ground truths for assessment of accuracy. Here, w...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095888/ https://www.ncbi.nlm.nih.gov/pubmed/35574188 http://dx.doi.org/10.1016/j.pacs.2022.100357 |
_version_ | 1784705850823147520 |
---|---|
author | Brown, Emma L. Lefebvre, Thierry L. Sweeney, Paul W. Stolz, Bernadette J. Gröhl, Janek Hacker, Lina Huang, Ziqiang Couturier, Dominique-Laurent Harrington, Heather A. Byrne, Helen M. Bohndiek, Sarah E. |
author_facet | Brown, Emma L. Lefebvre, Thierry L. Sweeney, Paul W. Stolz, Bernadette J. Gröhl, Janek Hacker, Lina Huang, Ziqiang Couturier, Dominique-Laurent Harrington, Heather A. Byrne, Helen M. Bohndiek, Sarah E. |
author_sort | Brown, Emma L. |
collection | PubMed |
description | Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour vasculature. The visual or semi-quantitative 2D measurements typically applied to mesoscopic PAI data fail to capture the 3D vessel network complexity and lack robust ground truths for assessment of accuracy. Here, we developed a pipeline for quantifying 3D vascular networks captured using mesoscopic PAI and tested the preservation of blood volume and network structure with topological data analysis. Ground truth data of in silico synthetic vasculatures and a string phantom indicated that learning-based segmentation best preserves vessel diameter and blood volume at depth, while rule-based segmentation with vesselness image filtering accurately preserved network structure in superficial vessels. Segmentation of vessels in breast cancer patient-derived xenografts (PDXs) compared favourably to ex vivo immunohistochemistry. Furthermore, our findings underscore the importance of validating segmentation methods when applying mesoscopic PAI as a tool to evaluate vascular networks in vivo. |
format | Online Article Text |
id | pubmed-9095888 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-90958882022-05-13 Quantification of vascular networks in photoacoustic mesoscopy Brown, Emma L. Lefebvre, Thierry L. Sweeney, Paul W. Stolz, Bernadette J. Gröhl, Janek Hacker, Lina Huang, Ziqiang Couturier, Dominique-Laurent Harrington, Heather A. Byrne, Helen M. Bohndiek, Sarah E. Photoacoustics Research Article Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour vasculature. The visual or semi-quantitative 2D measurements typically applied to mesoscopic PAI data fail to capture the 3D vessel network complexity and lack robust ground truths for assessment of accuracy. Here, we developed a pipeline for quantifying 3D vascular networks captured using mesoscopic PAI and tested the preservation of blood volume and network structure with topological data analysis. Ground truth data of in silico synthetic vasculatures and a string phantom indicated that learning-based segmentation best preserves vessel diameter and blood volume at depth, while rule-based segmentation with vesselness image filtering accurately preserved network structure in superficial vessels. Segmentation of vessels in breast cancer patient-derived xenografts (PDXs) compared favourably to ex vivo immunohistochemistry. Furthermore, our findings underscore the importance of validating segmentation methods when applying mesoscopic PAI as a tool to evaluate vascular networks in vivo. Elsevier 2022-04-20 /pmc/articles/PMC9095888/ /pubmed/35574188 http://dx.doi.org/10.1016/j.pacs.2022.100357 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Brown, Emma L. Lefebvre, Thierry L. Sweeney, Paul W. Stolz, Bernadette J. Gröhl, Janek Hacker, Lina Huang, Ziqiang Couturier, Dominique-Laurent Harrington, Heather A. Byrne, Helen M. Bohndiek, Sarah E. Quantification of vascular networks in photoacoustic mesoscopy |
title | Quantification of vascular networks in photoacoustic mesoscopy |
title_full | Quantification of vascular networks in photoacoustic mesoscopy |
title_fullStr | Quantification of vascular networks in photoacoustic mesoscopy |
title_full_unstemmed | Quantification of vascular networks in photoacoustic mesoscopy |
title_short | Quantification of vascular networks in photoacoustic mesoscopy |
title_sort | quantification of vascular networks in photoacoustic mesoscopy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095888/ https://www.ncbi.nlm.nih.gov/pubmed/35574188 http://dx.doi.org/10.1016/j.pacs.2022.100357 |
work_keys_str_mv | AT brownemmal quantificationofvascularnetworksinphotoacousticmesoscopy AT lefebvrethierryl quantificationofvascularnetworksinphotoacousticmesoscopy AT sweeneypaulw quantificationofvascularnetworksinphotoacousticmesoscopy AT stolzbernadettej quantificationofvascularnetworksinphotoacousticmesoscopy AT grohljanek quantificationofvascularnetworksinphotoacousticmesoscopy AT hackerlina quantificationofvascularnetworksinphotoacousticmesoscopy AT huangziqiang quantificationofvascularnetworksinphotoacousticmesoscopy AT couturierdominiquelaurent quantificationofvascularnetworksinphotoacousticmesoscopy AT harringtonheathera quantificationofvascularnetworksinphotoacousticmesoscopy AT byrnehelenm quantificationofvascularnetworksinphotoacousticmesoscopy AT bohndieksarahe quantificationofvascularnetworksinphotoacousticmesoscopy |