Cargando…
The neural correlates of psychosocial stress: A systematic review and meta-analysis of spectral analysis EEG studies
Whereas the link between psychosocial stress and health complications has long been established, the influence of psychosocial stress on brain activity is not yet completely understood. Electroencephalography (EEG) has been regularly employed to investigate the neural aspects of the psychosocial str...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095895/ https://www.ncbi.nlm.nih.gov/pubmed/35573807 http://dx.doi.org/10.1016/j.ynstr.2022.100452 |
Sumario: | Whereas the link between psychosocial stress and health complications has long been established, the influence of psychosocial stress on brain activity is not yet completely understood. Electroencephalography (EEG) has been regularly employed to investigate the neural aspects of the psychosocial stress response, but these results have not yet been unified. Therefore, in this article, we systematically review the current EEG literature in which spectral analyses were employed to investigate the neural psychosocial stress response and interpret the results with regard to the three stress phases (anticipatory, reactive, and recovery) in which the response can be divided. Our results show that three EEG measures, alpha power, beta power and frontal alpha asymmetry (FAA), are commonly utilized and that alpha power consistently decreases, beta power shows a tendency to increase, and FAA varies inconsistently. We furthermore found that whereas changes in alpha power are independent of the stress phase, and changes in beta power show a relative stress phase independent trend, other EEG measures such as delta power, theta power, relative gamma and theta-alpha power ratio show less stress phase independent changes. Meta-analyses conducted on alpha power, beta power and FAA further revealed a significant effect size (hedge's g = 0.6; p = 0.001) for alpha power, but an insignificant effect size for beta power (hedge's g = −0.31; p = 0.29) and FAA (hedge's g = 0.01, p = 0.93). From our results, it can be concluded that psychosocial stress results in significant changes in some spectral EEG indices, but that more research is needed to further uncover the precise (temporal) mechanisms underlying these neural responses. |
---|