Cargando…
Fusing Multimodal and Anatomical Volumes of Interest Features Using Convolutional Auto-Encoder and Convolutional Neural Networks for Alzheimer’s Disease Diagnosis
Alzheimer’s disease (AD) is an age-related disease that affects a large proportion of the elderly. Currently, the neuroimaging techniques [e.g., magnetic resonance imaging (MRI) and positron emission tomography (PET)] are promising modalities for AD diagnosis. Since not all brain regions are affecte...
Autores principales: | Abdelaziz, Mohammed, Wang, Tianfu, Elazab, Ahmed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9096261/ https://www.ncbi.nlm.nih.gov/pubmed/35572142 http://dx.doi.org/10.3389/fnagi.2022.812870 |
Ejemplares similares
-
Time-feature attention-based convolutional auto-encoder for flight feature extraction
por: Wang, Qixin, et al.
Publicado: (2023) -
Video Anomaly Detection Based on Convolutional Recurrent AutoEncoder
por: Wang, Bokun, et al.
Publicado: (2022) -
Convolutional auto-encoder for image denoising of ultra-low-dose CT
por: Nishio, Mizuho, et al.
Publicado: (2017) -
Fisher encoding of convolutional neural network features for endoscopic image classification
por: Wimmer, Georg, et al.
Publicado: (2018) -
Prediction of DNA Methylation based on Multi-dimensional feature encoding and double convolutional fully connected convolutional neural network
por: Hu, Wenxing, et al.
Publicado: (2023)