Cargando…
Increasing Robustness of Brain–Computer Interfaces Through Automatic Detection and Removal of Corrupted Input Signals
For brain–computer interfaces (BCIs) to be viable for long-term daily usage, they must be able to quickly identify and adapt to signal disruptions. Furthermore, the detection and mitigation steps need to occur automatically and without the need for user intervention while also being computationally...
Autores principales: | Vasko, Jordan L., Aume, Laura, Tamrakar, Sanjay, Colachis, Samuel C. IV, Dunlap, Collin F., Rich, Adam, Meyers, Eric C., Gabrieli, David, Friedenberg, David A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9096265/ https://www.ncbi.nlm.nih.gov/pubmed/35573306 http://dx.doi.org/10.3389/fnins.2022.858377 |
Ejemplares similares
-
Classifying Intracortical Brain-Machine Interface Signal Disruptions Based on System Performance and Applicable Compensatory Strategies: A Review
por: Dunlap, Collin F., et al.
Publicado: (2020) -
The Corruption of Charity
por: Hoar, C. E.
Publicado: (1920) -
Corruption and the Other(s): Scope of Superordinate Identity Matters for Corruption Permissibility
por: Pisor, Anne C., et al.
Publicado: (2015) -
Corruption
por: Pasternak, Jacyr
Publicado: (2017) -
Corruption Kills: Estimating the Global Impact of Corruption on Children Deaths
por: Hanf, Matthieu, et al.
Publicado: (2011)