Cargando…
Evaluation of Deep Learning Architectures for Aqueous Solubility Prediction
[Image: see text] Determining the aqueous solubility of molecules is a vital step in many pharmaceutical, environmental, and energy storage applications. Despite efforts made over decades, there are still challenges associated with developing a solubility prediction model with satisfactory accuracy...
Autores principales: | Panapitiya, Gihan, Girard, Michael, Hollas, Aaron, Sepulveda, Jonathan, Murugesan, Vijayakumar, Wang, Wei, Saldanha, Emily |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9096921/ https://www.ncbi.nlm.nih.gov/pubmed/35571767 http://dx.doi.org/10.1021/acsomega.2c00642 |
Ejemplares similares
-
SOMAS: a platform for data-driven material discovery in redox flow battery development
por: Gao, Peiyuan, et al.
Publicado: (2022) -
Evaluating uncertainty-based active learning for accelerating the generalization of molecular property prediction
por: Yin, Tianzhixi, et al.
Publicado: (2023) -
Improved Prediction of Aqueous Solubility of Novel Compounds by Going Deeper With Deep Learning
por: Cui, Qiuji, et al.
Publicado: (2020) -
Pruned Machine Learning Models to Predict Aqueous
Solubility
por: Perryman, Alexander L., et al.
Publicado: (2020) -
In silico prediction of aqueous solubility – classification models
por: Kramer, C, et al.
Publicado: (2008)