Cargando…

Low-Cost Resistive Microfluidic Salinity Sensor for High-Precision Detection of Drinking Water Salt Levels

[Image: see text] Rapid, inexpensive, and precise water salinity testing remains indispensable in water quality monitoring applications. Despite many sensors and commercialized devices to monitor seawater salinity, salt detection and quantification at very low levels of drinking water (below 120 ppm...

Descripción completa

Detalles Bibliográficos
Autores principales: Farshchi Heydari, Mohammad Javad, Tabatabaei, Nima, Rezai, Pouya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9096939/
https://www.ncbi.nlm.nih.gov/pubmed/35571800
http://dx.doi.org/10.1021/acsomega.2c00268
Descripción
Sumario:[Image: see text] Rapid, inexpensive, and precise water salinity testing remains indispensable in water quality monitoring applications. Despite many sensors and commercialized devices to monitor seawater salinity, salt detection and quantification at very low levels of drinking water (below 120 ppm) have been overlooked. In this paper, we report on optimization of a low-cost microfluidic sensor to measure water salinity in the range of 1–120 ppm. The proposed design employs two copper microbridge wires suspended orthogonally in a PDMS microchannel to measure salinity based on the electrical resistance between the wires. The preliminary design of the sensor microchannel with a rectangular cross-section width (w) of 900 μm and height (h) of 500 μm could measure the water salinity in the range of 1–20 ppm in less than 1 min with detection sensitivity, limit of detection (LOD), and limit of quantification (LOQ) of 17.1 ohm/ohm·cm(,) 0.31 ppm, and 0.37 ppm, respectively. Data from the preliminary design was used for developing and validating a numerical model which was subsequently used for parametric studies and optimization to improve the sensor’s performance. The optimized design demonstrated an order of magnitude increase in sensitivity (385 ohm/ohm·cm), a 6-fold wider detection range (1–120 ppm), and a 15-fold enhancement in miniaturization of the microfluidic channel (w = 200 μm and h = 150 μm) with LOD and LOQ of 0.39 and 0.44 ppm, respectively. In the future, the sensor can be integrated into a hand-held device to remove present impediments for low-cost and ubiquitous salinity surveillance of drinking water.