Cargando…
Machine Learning Model for Monitoring Rheological Properties of Synthetic Oil-Based Mud
[Image: see text] The drilling fluid rheology is a critical parameter during the oil and gas drilling operation to achieve optimum drilling performance without nonproductive time or extra remedial operation cost. The close monitoring for rheological properties will help the drilling fluid crew to ta...
Autores principales: | Alsabaa, Ahmed, Gamal, Hany, Elkatatny, Salaheldin, Abdelraouf, Yasmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9096953/ https://www.ncbi.nlm.nih.gov/pubmed/35571769 http://dx.doi.org/10.1021/acsomega.2c00404 |
Ejemplares similares
-
Improved Tracking of the Rheological Properties of
Max-Bridge Oil-Based Mud Using Artificial Neural Networks
por: Alsabaa, Ahmed, et al.
Publicado: (2021) -
Real-Time Prediction of Rheological Properties of Invert Emulsion Mud Using Adaptive Neuro-Fuzzy Inference System
por: Alsabaa, Ahmed, et al.
Publicado: (2020) -
Data-Driven Framework
for Real-time Rheological Properties
Prediction of Flat Rheology Synthetic Oil-Based Drilling Fluids
por: Abdelaal, Ahmed, et al.
Publicado: (2023) -
Role of Rock Saturation Condition on Rock–Mud
Interaction: Sandstone Geomechanics Study
por: Gamal, Hany, et al.
Publicado: (2022) -
The role of overbalance pressure on mud induced alteration of sandstone rock pore system
por: Gamal, Hany, et al.
Publicado: (2022)