Cargando…

Dihydroxynaphthalene-Based Allomelanins: A Source of Inspiration for Innovative Technological Materials

[Image: see text] Melanins are a wide class of natural pigments biosynthesized by different kinds of living organisms throughout all of the life domains, from bacteria to fungi, plants, and mammals. The biological functions played by these natural pigments are different (i.e., camouflage, radioprote...

Descripción completa

Detalles Bibliográficos
Autores principales: Lino, Valeria, Manini, Paola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9096960/
https://www.ncbi.nlm.nih.gov/pubmed/35571811
http://dx.doi.org/10.1021/acsomega.2c00641
Descripción
Sumario:[Image: see text] Melanins are a wide class of natural pigments biosynthesized by different kinds of living organisms throughout all of the life domains, from bacteria to fungi, plants, and mammals. The biological functions played by these natural pigments are different (i.e., camouflage, radioprotection, thermoregulation) and ascribable to a peculiar set of physical–chemical properties making melanins a unique class of biopolymers. Among these, allomelanins from 1,8-dihydroxynaphthalene (1,8-DHNmel) produced by some Ascomycetes have recently attracted particular interest for their robustness and ability to protect fungi against both hostile (i.e., attack from fungicidal agents) and extreme (i.e., high energy radiations) environments. Starting from this background, in this mini-review we offer a panorama of the recent advances on the oxidative chemistry of 1,8-DHN leading to the formation of allomelanin mimics with tailored structural and functional properties for technological applications.