Cargando…

In Vivo Neutralization of Myotoxin II, a Phospholipase A(2) Homologue from Bothrops asper Venom, Using Peptides Discovered via Phage Display Technology

[Image: see text] Many snake venom toxins cause local tissue damage in prey and victims, which constitutes an important pathology that is challenging to treat with existing antivenoms. One of the notorious toxins that causes such effects is myotoxin II present in the venom of the Central and Norther...

Descripción completa

Detalles Bibliográficos
Autores principales: Laustsen, Andreas H., Gless, Bengt H., Jenkins, Timothy P., Meyhoff-Madsen, Maria, Bjärtun, Johanna, Munk, Andreas S., Oscoz, Saioa, Fernández, Julián, Gutiérrez, José María, Lomonte, Bruno, Lohse, Brian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9096979/
https://www.ncbi.nlm.nih.gov/pubmed/35571794
http://dx.doi.org/10.1021/acsomega.2c00280
Descripción
Sumario:[Image: see text] Many snake venom toxins cause local tissue damage in prey and victims, which constitutes an important pathology that is challenging to treat with existing antivenoms. One of the notorious toxins that causes such effects is myotoxin II present in the venom of the Central and Northern South American viper, Bothrops asper. This Lys49 PLA(2) homologue is devoid of enzymatic activity and causes myotoxicity by disrupting the cell membranes of muscle tissue. To improve envenoming therapy, novel approaches are needed, warranting the discovery and development of inhibitors that target key toxins that are currently difficult to neutralize. Here, we report the identification of a new peptide (JB006), discovered using phage display technology, that is capable of binding to and neutralizing the toxic effects of myotoxin II in vitro and in vivo. Through computational modeling, we further identify hypothetical binding interactions between the toxin and the peptide to enable further development of inhibitors that can neutralize myotoxin II.