Cargando…

Disrupting autorepression circuitry generates “open-loop lethality” to yield escape-resistant antiviral agents

Across biological scales, gene-regulatory networks employ autorepression (negative feedback) to maintain homeostasis and minimize failure from aberrant expression. Here, we present a proof of concept that disrupting transcriptional negative feedback dysregulates viral gene expression to therapeutica...

Descripción completa

Detalles Bibliográficos
Autores principales: Chaturvedi, Sonali, Pablo, Michael, Wolf, Marie, Rosas-Rivera, Daniel, Calia, Giuliana, Kumar, Arjun J., Vardi, Noam, Du, Kelvin, Glazier, Joshua, Ke, Ruian, Chan, Matilda F., Perelson, Alan S., Weinberger, Leor S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097017/
https://www.ncbi.nlm.nih.gov/pubmed/35561685
http://dx.doi.org/10.1016/j.cell.2022.04.022
_version_ 1784706095075295232
author Chaturvedi, Sonali
Pablo, Michael
Wolf, Marie
Rosas-Rivera, Daniel
Calia, Giuliana
Kumar, Arjun J.
Vardi, Noam
Du, Kelvin
Glazier, Joshua
Ke, Ruian
Chan, Matilda F.
Perelson, Alan S.
Weinberger, Leor S.
author_facet Chaturvedi, Sonali
Pablo, Michael
Wolf, Marie
Rosas-Rivera, Daniel
Calia, Giuliana
Kumar, Arjun J.
Vardi, Noam
Du, Kelvin
Glazier, Joshua
Ke, Ruian
Chan, Matilda F.
Perelson, Alan S.
Weinberger, Leor S.
author_sort Chaturvedi, Sonali
collection PubMed
description Across biological scales, gene-regulatory networks employ autorepression (negative feedback) to maintain homeostasis and minimize failure from aberrant expression. Here, we present a proof of concept that disrupting transcriptional negative feedback dysregulates viral gene expression to therapeutically inhibit replication and confers a high evolutionary barrier to resistance. We find that nucleic-acid decoys mimicking cis-regulatory sites act as “feedback disruptors,” break homeostasis, and increase viral transcription factors to cytotoxic levels (termed “open-loop lethality”). Feedback disruptors against herpesviruses reduced viral replication >2-logs without activating innate immunity, showed sub-nM IC(50), synergized with standard-of-care antivirals, and inhibited virus replication in mice. In contrast to approved antivirals where resistance rapidly emerged, no feedback-disruptor escape mutants evolved in long-term cultures. For SARS-CoV-2, disruption of a putative feedback circuit also generated open-loop lethality, reducing viral titers by >1-log. These results demonstrate that generating open-loop lethality, via negative-feedback disruption, may yield a class of antimicrobials with a high genetic barrier to resistance.
format Online
Article
Text
id pubmed-9097017
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier Inc.
record_format MEDLINE/PubMed
spelling pubmed-90970172022-05-12 Disrupting autorepression circuitry generates “open-loop lethality” to yield escape-resistant antiviral agents Chaturvedi, Sonali Pablo, Michael Wolf, Marie Rosas-Rivera, Daniel Calia, Giuliana Kumar, Arjun J. Vardi, Noam Du, Kelvin Glazier, Joshua Ke, Ruian Chan, Matilda F. Perelson, Alan S. Weinberger, Leor S. Cell Article Across biological scales, gene-regulatory networks employ autorepression (negative feedback) to maintain homeostasis and minimize failure from aberrant expression. Here, we present a proof of concept that disrupting transcriptional negative feedback dysregulates viral gene expression to therapeutically inhibit replication and confers a high evolutionary barrier to resistance. We find that nucleic-acid decoys mimicking cis-regulatory sites act as “feedback disruptors,” break homeostasis, and increase viral transcription factors to cytotoxic levels (termed “open-loop lethality”). Feedback disruptors against herpesviruses reduced viral replication >2-logs without activating innate immunity, showed sub-nM IC(50), synergized with standard-of-care antivirals, and inhibited virus replication in mice. In contrast to approved antivirals where resistance rapidly emerged, no feedback-disruptor escape mutants evolved in long-term cultures. For SARS-CoV-2, disruption of a putative feedback circuit also generated open-loop lethality, reducing viral titers by >1-log. These results demonstrate that generating open-loop lethality, via negative-feedback disruption, may yield a class of antimicrobials with a high genetic barrier to resistance. Elsevier Inc. 2022-06-09 2022-05-12 /pmc/articles/PMC9097017/ /pubmed/35561685 http://dx.doi.org/10.1016/j.cell.2022.04.022 Text en © 2022 Elsevier Inc. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Article
Chaturvedi, Sonali
Pablo, Michael
Wolf, Marie
Rosas-Rivera, Daniel
Calia, Giuliana
Kumar, Arjun J.
Vardi, Noam
Du, Kelvin
Glazier, Joshua
Ke, Ruian
Chan, Matilda F.
Perelson, Alan S.
Weinberger, Leor S.
Disrupting autorepression circuitry generates “open-loop lethality” to yield escape-resistant antiviral agents
title Disrupting autorepression circuitry generates “open-loop lethality” to yield escape-resistant antiviral agents
title_full Disrupting autorepression circuitry generates “open-loop lethality” to yield escape-resistant antiviral agents
title_fullStr Disrupting autorepression circuitry generates “open-loop lethality” to yield escape-resistant antiviral agents
title_full_unstemmed Disrupting autorepression circuitry generates “open-loop lethality” to yield escape-resistant antiviral agents
title_short Disrupting autorepression circuitry generates “open-loop lethality” to yield escape-resistant antiviral agents
title_sort disrupting autorepression circuitry generates “open-loop lethality” to yield escape-resistant antiviral agents
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097017/
https://www.ncbi.nlm.nih.gov/pubmed/35561685
http://dx.doi.org/10.1016/j.cell.2022.04.022
work_keys_str_mv AT chaturvedisonali disruptingautorepressioncircuitrygeneratesopenlooplethalitytoyieldescaperesistantantiviralagents
AT pablomichael disruptingautorepressioncircuitrygeneratesopenlooplethalitytoyieldescaperesistantantiviralagents
AT wolfmarie disruptingautorepressioncircuitrygeneratesopenlooplethalitytoyieldescaperesistantantiviralagents
AT rosasriveradaniel disruptingautorepressioncircuitrygeneratesopenlooplethalitytoyieldescaperesistantantiviralagents
AT caliagiuliana disruptingautorepressioncircuitrygeneratesopenlooplethalitytoyieldescaperesistantantiviralagents
AT kumararjunj disruptingautorepressioncircuitrygeneratesopenlooplethalitytoyieldescaperesistantantiviralagents
AT vardinoam disruptingautorepressioncircuitrygeneratesopenlooplethalitytoyieldescaperesistantantiviralagents
AT dukelvin disruptingautorepressioncircuitrygeneratesopenlooplethalitytoyieldescaperesistantantiviralagents
AT glazierjoshua disruptingautorepressioncircuitrygeneratesopenlooplethalitytoyieldescaperesistantantiviralagents
AT keruian disruptingautorepressioncircuitrygeneratesopenlooplethalitytoyieldescaperesistantantiviralagents
AT chanmatildaf disruptingautorepressioncircuitrygeneratesopenlooplethalitytoyieldescaperesistantantiviralagents
AT perelsonalans disruptingautorepressioncircuitrygeneratesopenlooplethalitytoyieldescaperesistantantiviralagents
AT weinbergerleors disruptingautorepressioncircuitrygeneratesopenlooplethalitytoyieldescaperesistantantiviralagents