Cargando…
Machine learning to predict pregnancy outcomes: a systematic review, synthesizing framework and future research agenda
Machine Learning (ML) has been widely used in predicting the mode of childbirth and assessing the potential maternal risks during pregnancy. The primary aim of this review study is to explore current research and development perspectives that utilizes the ML techniques to predict the optimal mode of...
Autores principales: | Islam, Muhammad Nazrul, Mustafina, Sumaiya Nuha, Mahmud, Tahasin, Khan, Nafiz Imtiaz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097057/ https://www.ncbi.nlm.nih.gov/pubmed/35546393 http://dx.doi.org/10.1186/s12884-022-04594-2 |
Ejemplares similares
-
COVID‐19 and black fungus: Analysis of the public perceptions through machine learning
por: Imtiaz Khan, Nafiz, et al.
Publicado: (2021) -
Leveraging machine learning to analyze sentiment from COVID‐19 tweets: A global perspective
por: Rahman, Md Mahbubar, et al.
Publicado: (2022) -
Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda
por: Kumar, Yogesh, et al.
Publicado: (2022) -
A systematic review and future research agenda on detection of polycystic ovary syndrome (PCOS) with computer-aided techniques
por: Suha, Sayma Alam, et al.
Publicado: (2023) -
The future of buyer–seller interactions: a conceptual framework and research agenda
por: Ahearne, Michael, et al.
Publicado: (2021)