Cargando…
Artificial intelligence in Emergency Medical Services dispatching: assessing the potential impact of an automatic speech recognition software on stroke detection taking the Capital Region of Denmark as case in point
BACKGROUND AND PURPOSE: Stroke recognition at the Emergency Medical Services (EMS) impacts the stroke treatment and thus the related health outcome. At the EMS Copenhagen 66.2% of strokes are detected by the Emergency Medical Dispatcher (EMD) and in Denmark approximately 50% of stroke patients arriv...
Autores principales: | Scholz, Mirjam Lisa, Collatz-Christensen, Helle, Blomberg, Stig Nikolaj Fasmer, Boebel, Simone, Verhoeven, Jeske, Krafft, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097123/ https://www.ncbi.nlm.nih.gov/pubmed/35549978 http://dx.doi.org/10.1186/s13049-022-01020-6 |
Ejemplares similares
-
Patient characteristics and dispatch responses of urinary tract infections in a prehospital setting in Copenhagen, Denmark: a retrospective cohort study
por: Verhoeven, Jeske, et al.
Publicado: (2022) -
The “unclear problem” category: an analysis of its patient and dispatch characteristics and its trend over time
por: Otten, Sterre, et al.
Publicado: (2022) -
Injury from electric scooters in Copenhagen: a retrospective cohort study
por: Blomberg, Stig Nikolaj Fasmer, et al.
Publicado: (2019) -
Dispatcher Stroke/TIA Recognition in Emergency Medical Call Center and Out-of-Hours Service Calls in Copenhagen, Denmark
por: Wenstrup, Jonathan, et al.
Publicado: (2023) -
Impact of integrating out-of-hours services into Emergency Medical Services Copenhagen: a descriptive study of transformational years
por: Zinger, Nienke D., et al.
Publicado: (2022)