Cargando…

Design, Synthesis, and Molecular Modeling Studies of a Novel Benzimidazole as an Aromatase Inhibitor

[Image: see text] In this study, a series of novel 1,3,4-oxadiazole-benzimidazole derivatives were designed and synthesized. Their cytotoxic activities against five cancer cell lines, including A549, MCF-7, C6, HepG2, and HeLa, were evaluated by the MTT assay. The compounds 5b,c showed satisfactory...

Descripción completa

Detalles Bibliográficos
Autores principales: Çevik, Ulviye Acar, Celik, Ismail, Mella, Jaime, Mellado, Marco, Özkay, Yusuf, Kaplancıklı, Zafer Asım
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097188/
https://www.ncbi.nlm.nih.gov/pubmed/35571854
http://dx.doi.org/10.1021/acsomega.2c01497
Descripción
Sumario:[Image: see text] In this study, a series of novel 1,3,4-oxadiazole-benzimidazole derivatives were designed and synthesized. Their cytotoxic activities against five cancer cell lines, including A549, MCF-7, C6, HepG2, and HeLa, were evaluated by the MTT assay. The compounds 5b,c showed satisfactory potencies with much higher anticancer activity in comparison to the reference drug doxorubicin against the studied cancer cell lines. In vitro, enzymatic inhibition assays of aromatase (ARO) enzymes were performed. Molecular docking, molecular dynamics simulations, and binding free energy analyses were used to better understand the structure–activity connections and mechanism of action of the aromatase inhibitors. Two types of satisfactory 3D-QSAR (CoMFA and CoMSIA) models were generated, to predict the inhibitory activities of the novel inhibitors. Molecular docking studies were also carried out to find their binding sites and types of their interactions with the aromatase enzyme. Additionally, molecular dynamics simulations were performed to explore the most likely binding modes of compounds 5b,c with CYP19A1.