Cargando…
Anchoring Effect of Organosilanes on Hierarchical ZSM-5 Zeolite for Catalytic Fast Pyrolysis of Cellulose to Aromatics
[Image: see text] As an essential chemical feedstock, aromatics can be obtained from biomass by catalytic fast pyrolysis (CFP) technology, in which diffusion limitation is still a problem. In this study, several ZSM-5 zeolites with intercrystal stacking macropores were synthesized by adding organosi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097197/ https://www.ncbi.nlm.nih.gov/pubmed/35571774 http://dx.doi.org/10.1021/acsomega.2c00983 |
Sumario: | [Image: see text] As an essential chemical feedstock, aromatics can be obtained from biomass by catalytic fast pyrolysis (CFP) technology, in which diffusion limitation is still a problem. In this study, several ZSM-5 zeolites with intercrystal stacking macropores were synthesized by adding organosilanes (OSAs) with different alkyl chain groups. Due to the structure-directing effect of the OSA, the prepared ZSM-5 zeolites possess a larger external surface area and pore volume than Blank-Z5. Moreover, the pore size is related to the extent of anchoring of the OSA and silicon–aluminum species in the zeolite precursor. Pyridine Fourier transform infrared (Py-FTIR) and NH(3)-temperature-programmed desorption (TPD) analyses show that the obtained ZSM-5 zeolites have a higher Brønsted acidity and total number of acid sites. In addition, excessive addition of OSA is not conducive to the growth of ZSM-5 zeolites. The catalytic performance of the synthesized ZSM-5 zeolites was evaluated by Py-GC/MS. The larger external surface area and pore volume improve the accessibility of the acid sites and thus promote the conversion of biomass into aromatics. |
---|