Cargando…
Impact of Low Temperatures on the Lithiation and Delithiation Properties of Si-Based Electrodes in Ionic Liquid Electrolytes
[Image: see text] Lithium-ion batteries are used in various extreme environments, such as cold regions and outer space; thus, improvements in energy density, safety, and cycle life in these environments are urgently required. We investigated changes in the charge and discharge properties of Si-based...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097198/ https://www.ncbi.nlm.nih.gov/pubmed/35571775 http://dx.doi.org/10.1021/acsomega.2c00947 |
_version_ | 1784706129880678400 |
---|---|
author | Domi, Yasuhiro Usui, Hiroyuki Hirosawa, Tasuku Sugimoto, Kai Nakano, Takuma Ando, Akihiro Sakaguchi, Hiroki |
author_facet | Domi, Yasuhiro Usui, Hiroyuki Hirosawa, Tasuku Sugimoto, Kai Nakano, Takuma Ando, Akihiro Sakaguchi, Hiroki |
author_sort | Domi, Yasuhiro |
collection | PubMed |
description | [Image: see text] Lithium-ion batteries are used in various extreme environments, such as cold regions and outer space; thus, improvements in energy density, safety, and cycle life in these environments are urgently required. We investigated changes in the charge and discharge properties of Si-based electrodes in ionic liquid electrolytes with decreasing temperature and the cycle life at low temperature. The reversible capacity at low temperature was determined by the properties of the surface film on the electrodes and/or the ionic conductivity of the electrolytes. The electrode coated with a surface film formed at a low temperature exhibited insufficient capacity. In contrast, a Si-only electrode precoated with the surface film at room temperature exhibited a cycle life at low temperatures in ionic liquid electrolytes longer than that in conventional organic liquid electrolytes. Doping phosphorus into Si led to improved cycling performance, and its impact was more noticeable at lower temperatures. |
format | Online Article Text |
id | pubmed-9097198 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-90971982022-05-13 Impact of Low Temperatures on the Lithiation and Delithiation Properties of Si-Based Electrodes in Ionic Liquid Electrolytes Domi, Yasuhiro Usui, Hiroyuki Hirosawa, Tasuku Sugimoto, Kai Nakano, Takuma Ando, Akihiro Sakaguchi, Hiroki ACS Omega [Image: see text] Lithium-ion batteries are used in various extreme environments, such as cold regions and outer space; thus, improvements in energy density, safety, and cycle life in these environments are urgently required. We investigated changes in the charge and discharge properties of Si-based electrodes in ionic liquid electrolytes with decreasing temperature and the cycle life at low temperature. The reversible capacity at low temperature was determined by the properties of the surface film on the electrodes and/or the ionic conductivity of the electrolytes. The electrode coated with a surface film formed at a low temperature exhibited insufficient capacity. In contrast, a Si-only electrode precoated with the surface film at room temperature exhibited a cycle life at low temperatures in ionic liquid electrolytes longer than that in conventional organic liquid electrolytes. Doping phosphorus into Si led to improved cycling performance, and its impact was more noticeable at lower temperatures. American Chemical Society 2022-04-26 /pmc/articles/PMC9097198/ /pubmed/35571775 http://dx.doi.org/10.1021/acsomega.2c00947 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Domi, Yasuhiro Usui, Hiroyuki Hirosawa, Tasuku Sugimoto, Kai Nakano, Takuma Ando, Akihiro Sakaguchi, Hiroki Impact of Low Temperatures on the Lithiation and Delithiation Properties of Si-Based Electrodes in Ionic Liquid Electrolytes |
title | Impact of Low Temperatures on the Lithiation and Delithiation
Properties of Si-Based Electrodes in Ionic Liquid Electrolytes |
title_full | Impact of Low Temperatures on the Lithiation and Delithiation
Properties of Si-Based Electrodes in Ionic Liquid Electrolytes |
title_fullStr | Impact of Low Temperatures on the Lithiation and Delithiation
Properties of Si-Based Electrodes in Ionic Liquid Electrolytes |
title_full_unstemmed | Impact of Low Temperatures on the Lithiation and Delithiation
Properties of Si-Based Electrodes in Ionic Liquid Electrolytes |
title_short | Impact of Low Temperatures on the Lithiation and Delithiation
Properties of Si-Based Electrodes in Ionic Liquid Electrolytes |
title_sort | impact of low temperatures on the lithiation and delithiation
properties of si-based electrodes in ionic liquid electrolytes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097198/ https://www.ncbi.nlm.nih.gov/pubmed/35571775 http://dx.doi.org/10.1021/acsomega.2c00947 |
work_keys_str_mv | AT domiyasuhiro impactoflowtemperaturesonthelithiationanddelithiationpropertiesofsibasedelectrodesinionicliquidelectrolytes AT usuihiroyuki impactoflowtemperaturesonthelithiationanddelithiationpropertiesofsibasedelectrodesinionicliquidelectrolytes AT hirosawatasuku impactoflowtemperaturesonthelithiationanddelithiationpropertiesofsibasedelectrodesinionicliquidelectrolytes AT sugimotokai impactoflowtemperaturesonthelithiationanddelithiationpropertiesofsibasedelectrodesinionicliquidelectrolytes AT nakanotakuma impactoflowtemperaturesonthelithiationanddelithiationpropertiesofsibasedelectrodesinionicliquidelectrolytes AT andoakihiro impactoflowtemperaturesonthelithiationanddelithiationpropertiesofsibasedelectrodesinionicliquidelectrolytes AT sakaguchihiroki impactoflowtemperaturesonthelithiationanddelithiationpropertiesofsibasedelectrodesinionicliquidelectrolytes |