Cargando…
Decreased Postural Complexity in Overweight to Obese Children and Adolescents: A Cross-Sectional Study
INTRODUCTION: Although a few studies suggest that young overweight to obese children and adolescents (YO) may have impaired postural control compared to young normal-weight (YN) peers, little information exists about how these two groups differ in the quality of the underlying balance strategies emp...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097216/ https://www.ncbi.nlm.nih.gov/pubmed/35572009 http://dx.doi.org/10.3389/fnhum.2022.850548 |
_version_ | 1784706134056108032 |
---|---|
author | Wiesinger, Hans-Peter Buchecker, Michael Müller, Erich Stöggl, Thomas Birklbauer, Jürgen |
author_facet | Wiesinger, Hans-Peter Buchecker, Michael Müller, Erich Stöggl, Thomas Birklbauer, Jürgen |
author_sort | Wiesinger, Hans-Peter |
collection | PubMed |
description | INTRODUCTION: Although a few studies suggest that young overweight to obese children and adolescents (YO) may have impaired postural control compared to young normal-weight (YN) peers, little information exists about how these two groups differ in the quality of the underlying balance strategies employed. Hence, the aim of the present study was a first comprehensive examination of the structural complexity of postural sways in these two cohorts during quiet bilateral standing. METHODS: Nineteen YO secondary school students (13.0 ± 1.4 years; male = 10, female = 9) were carefully matched to YN controls (13.0 ± 1.5 years) for age, sex, height, and school. Mediolateral (ML) and anteriorposterior (AP) acceleration signals were recorded with an inertial measurement unit (IMU) positioned at the trunk while standing barefoot in two conditions: firm and foam support surface. The magnitude of postural fluctuations was obtained using the root mean square (RMS). The temporal structure of the signals was analyzed via sample entropy (SEn), largest Lyapunov exponent (LyE), and detrended fluctuation analysis (α-DFA) algorithm. Reliability was assessed using a test–retest design. RESULTS: In both groups, foam standing caused higher postural fluctuations (higher RMS values) and reduced structural complexity (lower SEn values, higher LyE values, higher α-DFA values). In comparison to YN, YO exhibited a higher RMS(AP). Especially in ML direction, the acceleration signals of the YO had higher repeatability (smaller SEn values), greater long-range correlations (higher α-DFA values), and lower local stability (higher LyE values). However, these observations were largely independent of the task difficulty. Except for α-DFA(AP), the IMU approach proved reliable to characterize posture control. DISCUSSION: Our outcomes confirm postural control deficits in YO compared to their YN peers and indicate impaired regulatory mechanisms reflected as rigidity. Such less complex patterns usually reflect diverse pathologies, are detrimental to compensate for internal or external perturbations, and are attributed to lower adaptability and task performance. Without targeted balance stimuli, YO likely end in a lifelong vicious circle of mutually dependent poor balance regulation and low physical activity. |
format | Online Article Text |
id | pubmed-9097216 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-90972162022-05-13 Decreased Postural Complexity in Overweight to Obese Children and Adolescents: A Cross-Sectional Study Wiesinger, Hans-Peter Buchecker, Michael Müller, Erich Stöggl, Thomas Birklbauer, Jürgen Front Hum Neurosci Human Neuroscience INTRODUCTION: Although a few studies suggest that young overweight to obese children and adolescents (YO) may have impaired postural control compared to young normal-weight (YN) peers, little information exists about how these two groups differ in the quality of the underlying balance strategies employed. Hence, the aim of the present study was a first comprehensive examination of the structural complexity of postural sways in these two cohorts during quiet bilateral standing. METHODS: Nineteen YO secondary school students (13.0 ± 1.4 years; male = 10, female = 9) were carefully matched to YN controls (13.0 ± 1.5 years) for age, sex, height, and school. Mediolateral (ML) and anteriorposterior (AP) acceleration signals were recorded with an inertial measurement unit (IMU) positioned at the trunk while standing barefoot in two conditions: firm and foam support surface. The magnitude of postural fluctuations was obtained using the root mean square (RMS). The temporal structure of the signals was analyzed via sample entropy (SEn), largest Lyapunov exponent (LyE), and detrended fluctuation analysis (α-DFA) algorithm. Reliability was assessed using a test–retest design. RESULTS: In both groups, foam standing caused higher postural fluctuations (higher RMS values) and reduced structural complexity (lower SEn values, higher LyE values, higher α-DFA values). In comparison to YN, YO exhibited a higher RMS(AP). Especially in ML direction, the acceleration signals of the YO had higher repeatability (smaller SEn values), greater long-range correlations (higher α-DFA values), and lower local stability (higher LyE values). However, these observations were largely independent of the task difficulty. Except for α-DFA(AP), the IMU approach proved reliable to characterize posture control. DISCUSSION: Our outcomes confirm postural control deficits in YO compared to their YN peers and indicate impaired regulatory mechanisms reflected as rigidity. Such less complex patterns usually reflect diverse pathologies, are detrimental to compensate for internal or external perturbations, and are attributed to lower adaptability and task performance. Without targeted balance stimuli, YO likely end in a lifelong vicious circle of mutually dependent poor balance regulation and low physical activity. Frontiers Media S.A. 2022-04-28 /pmc/articles/PMC9097216/ /pubmed/35572009 http://dx.doi.org/10.3389/fnhum.2022.850548 Text en Copyright © 2022 Wiesinger, Buchecker, Müller, Stöggl and Birklbauer. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Human Neuroscience Wiesinger, Hans-Peter Buchecker, Michael Müller, Erich Stöggl, Thomas Birklbauer, Jürgen Decreased Postural Complexity in Overweight to Obese Children and Adolescents: A Cross-Sectional Study |
title | Decreased Postural Complexity in Overweight to Obese Children and Adolescents: A Cross-Sectional Study |
title_full | Decreased Postural Complexity in Overweight to Obese Children and Adolescents: A Cross-Sectional Study |
title_fullStr | Decreased Postural Complexity in Overweight to Obese Children and Adolescents: A Cross-Sectional Study |
title_full_unstemmed | Decreased Postural Complexity in Overweight to Obese Children and Adolescents: A Cross-Sectional Study |
title_short | Decreased Postural Complexity in Overweight to Obese Children and Adolescents: A Cross-Sectional Study |
title_sort | decreased postural complexity in overweight to obese children and adolescents: a cross-sectional study |
topic | Human Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097216/ https://www.ncbi.nlm.nih.gov/pubmed/35572009 http://dx.doi.org/10.3389/fnhum.2022.850548 |
work_keys_str_mv | AT wiesingerhanspeter decreasedposturalcomplexityinoverweighttoobesechildrenandadolescentsacrosssectionalstudy AT bucheckermichael decreasedposturalcomplexityinoverweighttoobesechildrenandadolescentsacrosssectionalstudy AT mullererich decreasedposturalcomplexityinoverweighttoobesechildrenandadolescentsacrosssectionalstudy AT stogglthomas decreasedposturalcomplexityinoverweighttoobesechildrenandadolescentsacrosssectionalstudy AT birklbauerjurgen decreasedposturalcomplexityinoverweighttoobesechildrenandadolescentsacrosssectionalstudy |