Cargando…
Solvent-Free One-Pot Synthesis of Epoxy Nanocomposites Containing Mg(OH)(2) Nanocrystal–Nanoparticle Formation Mechanism
[Image: see text] Epoxy nanocomposites containing Mg(OH)(2) nanocrystals (MgNCs, 5.3 wt %) were produced via an eco-friendly “solvent-free one-pot” process. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and thermogravimetric analysis (TGA) confirm the presence of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097534/ https://www.ncbi.nlm.nih.gov/pubmed/35482845 http://dx.doi.org/10.1021/acs.langmuir.2c00377 |
Sumario: | [Image: see text] Epoxy nanocomposites containing Mg(OH)(2) nanocrystals (MgNCs, 5.3 wt %) were produced via an eco-friendly “solvent-free one-pot” process. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and thermogravimetric analysis (TGA) confirm the presence of well-dispersed MgNCs. HRTEM reveals the presence also of multisheet-silica-based nanoparticles and a tendency of MgNCs to intergrow, leading to complex nanometric structures with an intersheet size of ∼0.43 nm, which is in agreement with the lattice spacing of the Mg(OH)(2) (001) planes. The synthesis of MgNCs was designed on the basis of a mechanism initially proposed for the preparation of multisheet-silica-based/epoxy nanocomposites. The successful “in situ” generation of MgNCs in the epoxy via a “solvent-free one-pot” process confirms the validity of the earlier disclosed mechanism and thus opens up possibilities of new NCs with different fillers and polymer matrix. The condition would be the availability of a nanoparticle precursor soluble in the hydrophobic resin, giving the desired phase through hydrolysis and polycondensation. |
---|