Cargando…
Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms
The nucleoside analog remdesivir (RDV) is a Food and Drug Administration (FDA)-approved antiviral for treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Thus, it is critical to understand factors that promote or prevent RDV resistance. We passaged SARS-CoV-2 in the...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097878/ https://www.ncbi.nlm.nih.gov/pubmed/35482820 http://dx.doi.org/10.1126/scitranslmed.abo0718 |
_version_ | 1784706262065217536 |
---|---|
author | Stevens, Laura J. Pruijssers, Andrea J. Lee, Hery W. Gordon, Calvin J. Tchesnokov, Egor P. Gribble, Jennifer George, Amelia S. Hughes, Tia M. Lu, Xiaotao Li, Jiani Perry, Jason K. Porter, Danielle P. Cihlar, Tomas Sheahan, Timothy P. Baric, Ralph S. Götte, Matthias Denison, Mark R. |
author_facet | Stevens, Laura J. Pruijssers, Andrea J. Lee, Hery W. Gordon, Calvin J. Tchesnokov, Egor P. Gribble, Jennifer George, Amelia S. Hughes, Tia M. Lu, Xiaotao Li, Jiani Perry, Jason K. Porter, Danielle P. Cihlar, Tomas Sheahan, Timothy P. Baric, Ralph S. Götte, Matthias Denison, Mark R. |
author_sort | Stevens, Laura J. |
collection | PubMed |
description | The nucleoside analog remdesivir (RDV) is a Food and Drug Administration (FDA)-approved antiviral for treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Thus, it is critical to understand factors that promote or prevent RDV resistance. We passaged SARS-CoV-2 in the presence of increasing concentrations of GS-441524, the parent nucleoside of RDV. After 13 passages, we isolated three viral lineages with phenotypic resistance as defined by increases in half-maximal effective concentration (EC(50)) from 2.7-to 10.4-fold. Sequence analysis identified non-synonymous mutations in nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp): V166A, N198S, S759A, V792I and C799F/R. Two lineages encoded the S759A substitution at the RdRp Ser(759)-Asp-Asp active motif. In one lineage, the V792I substitution emerged first, then combined with S759A. Introduction of S759A and V792I substitutions at homologous nsp12 positions in murine hepatitis virus (MHV) demonstrated transferability across betacoronaviruses; introduction of these substitutions resulted in up to 38-fold RDV resistance and a replication defect. Biochemical analysis of SARS-CoV-2 RdRp encoding S759A demonstrated a roughly 10-fold decreased preference for RDV-triphosphate (RDV-TP) as a substrate, whereas nsp12-V792I diminished the uridine-triphosphate (UTP) concentration needed to overcome template-dependent inhibition associated with RDV. The in vitro-selected substitutions identified in this study were rare or not detected in the greater than 6 million publicly available nsp12-RdRp consensus sequences in the absence of RDV selection. The results define genetic and biochemical pathways to RDV resistance and emphasize the need for additional studies to define the potential for emergence of these or other RDV resistance mutations in clinical settings. |
format | Online Article Text |
id | pubmed-9097878 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-90978782022-05-17 Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms Stevens, Laura J. Pruijssers, Andrea J. Lee, Hery W. Gordon, Calvin J. Tchesnokov, Egor P. Gribble, Jennifer George, Amelia S. Hughes, Tia M. Lu, Xiaotao Li, Jiani Perry, Jason K. Porter, Danielle P. Cihlar, Tomas Sheahan, Timothy P. Baric, Ralph S. Götte, Matthias Denison, Mark R. Sci Transl Med Research Articles The nucleoside analog remdesivir (RDV) is a Food and Drug Administration (FDA)-approved antiviral for treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Thus, it is critical to understand factors that promote or prevent RDV resistance. We passaged SARS-CoV-2 in the presence of increasing concentrations of GS-441524, the parent nucleoside of RDV. After 13 passages, we isolated three viral lineages with phenotypic resistance as defined by increases in half-maximal effective concentration (EC(50)) from 2.7-to 10.4-fold. Sequence analysis identified non-synonymous mutations in nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp): V166A, N198S, S759A, V792I and C799F/R. Two lineages encoded the S759A substitution at the RdRp Ser(759)-Asp-Asp active motif. In one lineage, the V792I substitution emerged first, then combined with S759A. Introduction of S759A and V792I substitutions at homologous nsp12 positions in murine hepatitis virus (MHV) demonstrated transferability across betacoronaviruses; introduction of these substitutions resulted in up to 38-fold RDV resistance and a replication defect. Biochemical analysis of SARS-CoV-2 RdRp encoding S759A demonstrated a roughly 10-fold decreased preference for RDV-triphosphate (RDV-TP) as a substrate, whereas nsp12-V792I diminished the uridine-triphosphate (UTP) concentration needed to overcome template-dependent inhibition associated with RDV. The in vitro-selected substitutions identified in this study were rare or not detected in the greater than 6 million publicly available nsp12-RdRp consensus sequences in the absence of RDV selection. The results define genetic and biochemical pathways to RDV resistance and emphasize the need for additional studies to define the potential for emergence of these or other RDV resistance mutations in clinical settings. American Association for the Advancement of Science 2022-04-28 /pmc/articles/PMC9097878/ /pubmed/35482820 http://dx.doi.org/10.1126/scitranslmed.abo0718 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Stevens, Laura J. Pruijssers, Andrea J. Lee, Hery W. Gordon, Calvin J. Tchesnokov, Egor P. Gribble, Jennifer George, Amelia S. Hughes, Tia M. Lu, Xiaotao Li, Jiani Perry, Jason K. Porter, Danielle P. Cihlar, Tomas Sheahan, Timothy P. Baric, Ralph S. Götte, Matthias Denison, Mark R. Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms |
title | Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms |
title_full | Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms |
title_fullStr | Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms |
title_full_unstemmed | Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms |
title_short | Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms |
title_sort | mutations in the sars-cov-2 rna dependent rna polymerase confer resistance to remdesivir by distinct mechanisms |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097878/ https://www.ncbi.nlm.nih.gov/pubmed/35482820 http://dx.doi.org/10.1126/scitranslmed.abo0718 |
work_keys_str_mv | AT stevenslauraj mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms AT pruijssersandreaj mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms AT leeheryw mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms AT gordoncalvinj mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms AT tchesnokovegorp mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms AT gribblejennifer mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms AT georgeamelias mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms AT hughestiam mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms AT luxiaotao mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms AT lijiani mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms AT perryjasonk mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms AT porterdaniellep mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms AT cihlartomas mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms AT sheahantimothyp mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms AT baricralphs mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms AT gottematthias mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms AT denisonmarkr mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms |