Cargando…

Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms

The nucleoside analog remdesivir (RDV) is a Food and Drug Administration (FDA)-approved antiviral for treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Thus, it is critical to understand factors that promote or prevent RDV resistance. We passaged SARS-CoV-2 in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Stevens, Laura J., Pruijssers, Andrea J., Lee, Hery W., Gordon, Calvin J., Tchesnokov, Egor P., Gribble, Jennifer, George, Amelia S., Hughes, Tia M., Lu, Xiaotao, Li, Jiani, Perry, Jason K., Porter, Danielle P., Cihlar, Tomas, Sheahan, Timothy P., Baric, Ralph S., Götte, Matthias, Denison, Mark R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097878/
https://www.ncbi.nlm.nih.gov/pubmed/35482820
http://dx.doi.org/10.1126/scitranslmed.abo0718
_version_ 1784706262065217536
author Stevens, Laura J.
Pruijssers, Andrea J.
Lee, Hery W.
Gordon, Calvin J.
Tchesnokov, Egor P.
Gribble, Jennifer
George, Amelia S.
Hughes, Tia M.
Lu, Xiaotao
Li, Jiani
Perry, Jason K.
Porter, Danielle P.
Cihlar, Tomas
Sheahan, Timothy P.
Baric, Ralph S.
Götte, Matthias
Denison, Mark R.
author_facet Stevens, Laura J.
Pruijssers, Andrea J.
Lee, Hery W.
Gordon, Calvin J.
Tchesnokov, Egor P.
Gribble, Jennifer
George, Amelia S.
Hughes, Tia M.
Lu, Xiaotao
Li, Jiani
Perry, Jason K.
Porter, Danielle P.
Cihlar, Tomas
Sheahan, Timothy P.
Baric, Ralph S.
Götte, Matthias
Denison, Mark R.
author_sort Stevens, Laura J.
collection PubMed
description The nucleoside analog remdesivir (RDV) is a Food and Drug Administration (FDA)-approved antiviral for treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Thus, it is critical to understand factors that promote or prevent RDV resistance. We passaged SARS-CoV-2 in the presence of increasing concentrations of GS-441524, the parent nucleoside of RDV. After 13 passages, we isolated three viral lineages with phenotypic resistance as defined by increases in half-maximal effective concentration (EC(50)) from 2.7-to 10.4-fold. Sequence analysis identified non-synonymous mutations in nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp): V166A, N198S, S759A, V792I and C799F/R. Two lineages encoded the S759A substitution at the RdRp Ser(759)-Asp-Asp active motif. In one lineage, the V792I substitution emerged first, then combined with S759A. Introduction of S759A and V792I substitutions at homologous nsp12 positions in murine hepatitis virus (MHV) demonstrated transferability across betacoronaviruses; introduction of these substitutions resulted in up to 38-fold RDV resistance and a replication defect. Biochemical analysis of SARS-CoV-2 RdRp encoding S759A demonstrated a roughly 10-fold decreased preference for RDV-triphosphate (RDV-TP) as a substrate, whereas nsp12-V792I diminished the uridine-triphosphate (UTP) concentration needed to overcome template-dependent inhibition associated with RDV. The in vitro-selected substitutions identified in this study were rare or not detected in the greater than 6 million publicly available nsp12-RdRp consensus sequences in the absence of RDV selection. The results define genetic and biochemical pathways to RDV resistance and emphasize the need for additional studies to define the potential for emergence of these or other RDV resistance mutations in clinical settings.
format Online
Article
Text
id pubmed-9097878
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-90978782022-05-17 Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms Stevens, Laura J. Pruijssers, Andrea J. Lee, Hery W. Gordon, Calvin J. Tchesnokov, Egor P. Gribble, Jennifer George, Amelia S. Hughes, Tia M. Lu, Xiaotao Li, Jiani Perry, Jason K. Porter, Danielle P. Cihlar, Tomas Sheahan, Timothy P. Baric, Ralph S. Götte, Matthias Denison, Mark R. Sci Transl Med Research Articles The nucleoside analog remdesivir (RDV) is a Food and Drug Administration (FDA)-approved antiviral for treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Thus, it is critical to understand factors that promote or prevent RDV resistance. We passaged SARS-CoV-2 in the presence of increasing concentrations of GS-441524, the parent nucleoside of RDV. After 13 passages, we isolated three viral lineages with phenotypic resistance as defined by increases in half-maximal effective concentration (EC(50)) from 2.7-to 10.4-fold. Sequence analysis identified non-synonymous mutations in nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp): V166A, N198S, S759A, V792I and C799F/R. Two lineages encoded the S759A substitution at the RdRp Ser(759)-Asp-Asp active motif. In one lineage, the V792I substitution emerged first, then combined with S759A. Introduction of S759A and V792I substitutions at homologous nsp12 positions in murine hepatitis virus (MHV) demonstrated transferability across betacoronaviruses; introduction of these substitutions resulted in up to 38-fold RDV resistance and a replication defect. Biochemical analysis of SARS-CoV-2 RdRp encoding S759A demonstrated a roughly 10-fold decreased preference for RDV-triphosphate (RDV-TP) as a substrate, whereas nsp12-V792I diminished the uridine-triphosphate (UTP) concentration needed to overcome template-dependent inhibition associated with RDV. The in vitro-selected substitutions identified in this study were rare or not detected in the greater than 6 million publicly available nsp12-RdRp consensus sequences in the absence of RDV selection. The results define genetic and biochemical pathways to RDV resistance and emphasize the need for additional studies to define the potential for emergence of these or other RDV resistance mutations in clinical settings. American Association for the Advancement of Science 2022-04-28 /pmc/articles/PMC9097878/ /pubmed/35482820 http://dx.doi.org/10.1126/scitranslmed.abo0718 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Stevens, Laura J.
Pruijssers, Andrea J.
Lee, Hery W.
Gordon, Calvin J.
Tchesnokov, Egor P.
Gribble, Jennifer
George, Amelia S.
Hughes, Tia M.
Lu, Xiaotao
Li, Jiani
Perry, Jason K.
Porter, Danielle P.
Cihlar, Tomas
Sheahan, Timothy P.
Baric, Ralph S.
Götte, Matthias
Denison, Mark R.
Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms
title Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms
title_full Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms
title_fullStr Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms
title_full_unstemmed Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms
title_short Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms
title_sort mutations in the sars-cov-2 rna dependent rna polymerase confer resistance to remdesivir by distinct mechanisms
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097878/
https://www.ncbi.nlm.nih.gov/pubmed/35482820
http://dx.doi.org/10.1126/scitranslmed.abo0718
work_keys_str_mv AT stevenslauraj mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms
AT pruijssersandreaj mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms
AT leeheryw mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms
AT gordoncalvinj mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms
AT tchesnokovegorp mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms
AT gribblejennifer mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms
AT georgeamelias mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms
AT hughestiam mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms
AT luxiaotao mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms
AT lijiani mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms
AT perryjasonk mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms
AT porterdaniellep mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms
AT cihlartomas mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms
AT sheahantimothyp mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms
AT baricralphs mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms
AT gottematthias mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms
AT denisonmarkr mutationsinthesarscov2rnadependentrnapolymeraseconferresistancetoremdesivirbydistinctmechanisms