Cargando…
Analyzing nested experimental designs—A user-friendly resampling method to determine experimental significance
While hierarchical experimental designs are near-ubiquitous in neuroscience and biomedical research, researchers often do not take the structure of their datasets into account while performing statistical hypothesis tests. Resampling-based methods are a flexible strategy for performing these analyse...
Autores principales: | Kulkarni, Rishikesh U., Wang, Catherine L., Bertozzi, Carolyn R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098003/ https://www.ncbi.nlm.nih.gov/pubmed/35500032 http://dx.doi.org/10.1371/journal.pcbi.1010061 |
Ejemplares similares
-
Fingerprint resampling: A generic method for efficient resampling
por: Mestdagh, Merijn, et al.
Publicado: (2015) -
Robust latent-variable interpretation of in vivo regression models by nested resampling
por: Caulk, Alexander W., et al.
Publicado: (2019) -
Detection of Significant Groups in Hierarchical Clustering by Resampling
por: Sebastiani, Paola, et al.
Publicado: (2016) -
RIO: Analyzing proteomes by automated phylogenomics using resampled inference of orthologs
por: Zmasek, Christian M, et al.
Publicado: (2002) -
Resampling Effects on Significance Analysis of Network Clustering and Ranking
por: Mirshahvalad, Atieh, et al.
Publicado: (2013)