Cargando…

Imine-Based Reactive Mesogen and Its Corresponding Exchangeable Liquid Crystal Elastomer

[Image: see text] To date, exchangeable liquid crystalline elastomers (xLCEs) have been mainly fabricated by combining conventional LCEs with additional exchangeable functional groups in their networks. While conventional LCEs are frequently made from commercially available aromatic–ester reacting m...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Xueyan, Gablier, Alexandra, Terentjev, Eugene M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098173/
https://www.ncbi.nlm.nih.gov/pubmed/35572090
http://dx.doi.org/10.1021/acs.macromol.1c02432
Descripción
Sumario:[Image: see text] To date, exchangeable liquid crystalline elastomers (xLCEs) have been mainly fabricated by combining conventional LCEs with additional exchangeable functional groups in their networks. While conventional LCEs are frequently made from commercially available aromatic–ester reacting mesogens or from mesogens based on a biphenyl core, such reacting monomers are not optimized to fabricating xLCEs whose bond-exchange reaction is fast and clean cut. Here, we develop a fast synthesis route to produce a new type of reactive mesogen based on an aromatic–imine structure that intrinsically enables a fast and stable bond-exchange reaction in the resulting imine-based xLCE. This new xLCE displays vitrimer plastic-flow behavior, and its bond-exchange activation energy is calculated to be 54 kJ/mol. We also demonstrate that this xLCE is thermally stable to withstand many recycling cycles without visible decay, and its liquid crystallinity is preserved. Finally, we demonstrate the reprogramming and realignment of the mesogen orientation in this xLCE with the realigned xLCE capable of reversible thermal actuation.