Cargando…
Preserving the Privacy of Healthcare Data over Social Networks Using Machine Learning
A key challenge in clinical recommendation systems is the problem of aberrant patient profiles in social networks. As a result of a person's abnormal profile, numerous vests might be used to make fake remarks about them, cyber bullying, or cyber-attacks. Many clinical researchers have done exte...
Autores principales: | Veeramakali, T., Shobanadevi, A., Nayak, Nihar Ranjan, Kumar, Sumit, Singhal, Sunita, Subramanian, Manoharan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098267/ https://www.ncbi.nlm.nih.gov/pubmed/35571706 http://dx.doi.org/10.1155/2022/4690936 |
Ejemplares similares
-
Retracted: Preserving the Privacy of Healthcare Data over Social Networks Using Machine Learning
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
Privacy Protection of Healthcare Data over Social Networks Using Machine Learning Algorithms
por: Khan, Shakir, et al.
Publicado: (2022) -
Retracted: Privacy Protection of Healthcare Data over Social Networks Using Machine Learning Algorithms
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
Anomaly detection over differential preserved privacy in online social networks
por: Aljably, Randa, et al.
Publicado: (2019) -
A Novel Optimized Perturbation-Based Machine Learning for Preserving Privacy in Medical Data
por: Dansana, Jayanti, et al.
Publicado: (2023)