Cargando…

Achieving large thermal hysteresis in an anthracene-based manganese(II) complex via photo-induced electron transfer

Achieving magnetic bistability with large thermal hysteresis is still a formidable challenge in material science. Here we synthesize a series of isostructural chain complexes using 9,10-anthracene dicarboxylic acid as a photoactive component. The electron transfer photochromic Mn(2+) and Zn(2+) comp...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Ji-Xiang, Li, Qi, Zhu, Hai-Lang, Gao, Zhen-Ni, Zhang, Qian, Liu, Tao, Wang, Guo-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098415/
https://www.ncbi.nlm.nih.gov/pubmed/35551184
http://dx.doi.org/10.1038/s41467-022-30425-1
Descripción
Sumario:Achieving magnetic bistability with large thermal hysteresis is still a formidable challenge in material science. Here we synthesize a series of isostructural chain complexes using 9,10-anthracene dicarboxylic acid as a photoactive component. The electron transfer photochromic Mn(2+) and Zn(2+) compounds with photogenerated diradicals are confirmed by structures, optical spectra, magnetic analyses, and density functional theory calculations. For the Mn(2+) analog, light irradiation changes the spin topology from a single Mn(2+) ion to a radical-Mn(2+) single chain, further inducing magnetic bistability with a remarkably wide thermal hysteresis of 177 K. Structural analysis of light irradiated crystals at 300 and 50 K reveals that the rotation of the anthracene rings changes the Mn1–O2–C8 angle and coordination geometries of the Mn(2+) center, resulting in magnetic bistability with this wide thermal hysteresis. This work provides a strategy for constructing molecular magnets with large thermal hysteresis via electron transfer photochromism.