Cargando…
Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity
Numerous software tools exist for data-independent acquisition (DIA) analysis of clinical samples, necessitating their comprehensive benchmarking. We present a benchmark dataset comprising real-world inter-patient heterogeneity, which we use for in-depth benchmarking of DIA data analysis workflows f...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098472/ https://www.ncbi.nlm.nih.gov/pubmed/35551187 http://dx.doi.org/10.1038/s41467-022-30094-0 |
_version_ | 1784706391188963328 |
---|---|
author | Fröhlich, Klemens Brombacher, Eva Fahrner, Matthias Vogele, Daniel Kook, Lucas Pinter, Niko Bronsert, Peter Timme-Bronsert, Sylvia Schmidt, Alexander Bärenfaller, Katja Kreutz, Clemens Schilling, Oliver |
author_facet | Fröhlich, Klemens Brombacher, Eva Fahrner, Matthias Vogele, Daniel Kook, Lucas Pinter, Niko Bronsert, Peter Timme-Bronsert, Sylvia Schmidt, Alexander Bärenfaller, Katja Kreutz, Clemens Schilling, Oliver |
author_sort | Fröhlich, Klemens |
collection | PubMed |
description | Numerous software tools exist for data-independent acquisition (DIA) analysis of clinical samples, necessitating their comprehensive benchmarking. We present a benchmark dataset comprising real-world inter-patient heterogeneity, which we use for in-depth benchmarking of DIA data analysis workflows for clinical settings. Combining spectral libraries, DIA software, sparsity reduction, normalization, and statistical tests results in 1428 distinct data analysis workflows, which we evaluate based on their ability to correctly identify differentially abundant proteins. From our dataset, we derive bootstrap datasets of varying sample sizes and use the whole range of bootstrap datasets to robustly evaluate each workflow. We find that all DIA software suites benefit from using a gas-phase fractionated spectral library, irrespective of the library refinement used. Gas-phase fractionation-based libraries perform best against two out of three reference protein lists. Among all investigated statistical tests non-parametric permutation-based statistical tests consistently perform best. |
format | Online Article Text |
id | pubmed-9098472 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-90984722022-05-14 Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity Fröhlich, Klemens Brombacher, Eva Fahrner, Matthias Vogele, Daniel Kook, Lucas Pinter, Niko Bronsert, Peter Timme-Bronsert, Sylvia Schmidt, Alexander Bärenfaller, Katja Kreutz, Clemens Schilling, Oliver Nat Commun Article Numerous software tools exist for data-independent acquisition (DIA) analysis of clinical samples, necessitating their comprehensive benchmarking. We present a benchmark dataset comprising real-world inter-patient heterogeneity, which we use for in-depth benchmarking of DIA data analysis workflows for clinical settings. Combining spectral libraries, DIA software, sparsity reduction, normalization, and statistical tests results in 1428 distinct data analysis workflows, which we evaluate based on their ability to correctly identify differentially abundant proteins. From our dataset, we derive bootstrap datasets of varying sample sizes and use the whole range of bootstrap datasets to robustly evaluate each workflow. We find that all DIA software suites benefit from using a gas-phase fractionated spectral library, irrespective of the library refinement used. Gas-phase fractionation-based libraries perform best against two out of three reference protein lists. Among all investigated statistical tests non-parametric permutation-based statistical tests consistently perform best. Nature Publishing Group UK 2022-05-12 /pmc/articles/PMC9098472/ /pubmed/35551187 http://dx.doi.org/10.1038/s41467-022-30094-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Fröhlich, Klemens Brombacher, Eva Fahrner, Matthias Vogele, Daniel Kook, Lucas Pinter, Niko Bronsert, Peter Timme-Bronsert, Sylvia Schmidt, Alexander Bärenfaller, Katja Kreutz, Clemens Schilling, Oliver Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity |
title | Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity |
title_full | Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity |
title_fullStr | Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity |
title_full_unstemmed | Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity |
title_short | Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity |
title_sort | benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098472/ https://www.ncbi.nlm.nih.gov/pubmed/35551187 http://dx.doi.org/10.1038/s41467-022-30094-0 |
work_keys_str_mv | AT frohlichklemens benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity AT brombachereva benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity AT fahrnermatthias benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity AT vogeledaniel benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity AT kooklucas benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity AT pinterniko benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity AT bronsertpeter benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity AT timmebronsertsylvia benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity AT schmidtalexander benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity AT barenfallerkatja benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity AT kreutzclemens benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity AT schillingoliver benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity |