Cargando…

Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity

Numerous software tools exist for data-independent acquisition (DIA) analysis of clinical samples, necessitating their comprehensive benchmarking. We present a benchmark dataset comprising real-world inter-patient heterogeneity, which we use for in-depth benchmarking of DIA data analysis workflows f...

Descripción completa

Detalles Bibliográficos
Autores principales: Fröhlich, Klemens, Brombacher, Eva, Fahrner, Matthias, Vogele, Daniel, Kook, Lucas, Pinter, Niko, Bronsert, Peter, Timme-Bronsert, Sylvia, Schmidt, Alexander, Bärenfaller, Katja, Kreutz, Clemens, Schilling, Oliver
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098472/
https://www.ncbi.nlm.nih.gov/pubmed/35551187
http://dx.doi.org/10.1038/s41467-022-30094-0
_version_ 1784706391188963328
author Fröhlich, Klemens
Brombacher, Eva
Fahrner, Matthias
Vogele, Daniel
Kook, Lucas
Pinter, Niko
Bronsert, Peter
Timme-Bronsert, Sylvia
Schmidt, Alexander
Bärenfaller, Katja
Kreutz, Clemens
Schilling, Oliver
author_facet Fröhlich, Klemens
Brombacher, Eva
Fahrner, Matthias
Vogele, Daniel
Kook, Lucas
Pinter, Niko
Bronsert, Peter
Timme-Bronsert, Sylvia
Schmidt, Alexander
Bärenfaller, Katja
Kreutz, Clemens
Schilling, Oliver
author_sort Fröhlich, Klemens
collection PubMed
description Numerous software tools exist for data-independent acquisition (DIA) analysis of clinical samples, necessitating their comprehensive benchmarking. We present a benchmark dataset comprising real-world inter-patient heterogeneity, which we use for in-depth benchmarking of DIA data analysis workflows for clinical settings. Combining spectral libraries, DIA software, sparsity reduction, normalization, and statistical tests results in 1428 distinct data analysis workflows, which we evaluate based on their ability to correctly identify differentially abundant proteins. From our dataset, we derive bootstrap datasets of varying sample sizes and use the whole range of bootstrap datasets to robustly evaluate each workflow. We find that all DIA software suites benefit from using a gas-phase fractionated spectral library, irrespective of the library refinement used. Gas-phase fractionation-based libraries perform best against two out of three reference protein lists. Among all investigated statistical tests non-parametric permutation-based statistical tests consistently perform best.
format Online
Article
Text
id pubmed-9098472
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-90984722022-05-14 Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity Fröhlich, Klemens Brombacher, Eva Fahrner, Matthias Vogele, Daniel Kook, Lucas Pinter, Niko Bronsert, Peter Timme-Bronsert, Sylvia Schmidt, Alexander Bärenfaller, Katja Kreutz, Clemens Schilling, Oliver Nat Commun Article Numerous software tools exist for data-independent acquisition (DIA) analysis of clinical samples, necessitating their comprehensive benchmarking. We present a benchmark dataset comprising real-world inter-patient heterogeneity, which we use for in-depth benchmarking of DIA data analysis workflows for clinical settings. Combining spectral libraries, DIA software, sparsity reduction, normalization, and statistical tests results in 1428 distinct data analysis workflows, which we evaluate based on their ability to correctly identify differentially abundant proteins. From our dataset, we derive bootstrap datasets of varying sample sizes and use the whole range of bootstrap datasets to robustly evaluate each workflow. We find that all DIA software suites benefit from using a gas-phase fractionated spectral library, irrespective of the library refinement used. Gas-phase fractionation-based libraries perform best against two out of three reference protein lists. Among all investigated statistical tests non-parametric permutation-based statistical tests consistently perform best. Nature Publishing Group UK 2022-05-12 /pmc/articles/PMC9098472/ /pubmed/35551187 http://dx.doi.org/10.1038/s41467-022-30094-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Fröhlich, Klemens
Brombacher, Eva
Fahrner, Matthias
Vogele, Daniel
Kook, Lucas
Pinter, Niko
Bronsert, Peter
Timme-Bronsert, Sylvia
Schmidt, Alexander
Bärenfaller, Katja
Kreutz, Clemens
Schilling, Oliver
Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity
title Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity
title_full Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity
title_fullStr Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity
title_full_unstemmed Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity
title_short Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity
title_sort benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098472/
https://www.ncbi.nlm.nih.gov/pubmed/35551187
http://dx.doi.org/10.1038/s41467-022-30094-0
work_keys_str_mv AT frohlichklemens benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity
AT brombachereva benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity
AT fahrnermatthias benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity
AT vogeledaniel benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity
AT kooklucas benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity
AT pinterniko benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity
AT bronsertpeter benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity
AT timmebronsertsylvia benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity
AT schmidtalexander benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity
AT barenfallerkatja benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity
AT kreutzclemens benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity
AT schillingoliver benchmarkingofanalysisstrategiesfordataindependentacquisitionproteomicsusingalargescaledatasetcomprisinginterpatientheterogeneity