Cargando…

Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases

Pancreatic necrosis is a consistent prognostic factor in acute pancreatitis (AP). However, the clinical scores currently in use are either too complicated or require data that are unavailable on admission or lack sufficient predictive value. We therefore aimed to develop a tool to aid in necrosis pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Kiss, Szabolcs, Pintér, József, Molontay, Roland, Nagy, Marcell, Farkas, Nelli, Sipos, Zoltán, Fehérvári, Péter, Pecze, László, Földi, Mária, Vincze, Áron, Takács, Tamás, Czakó, László, Izbéki, Ferenc, Halász, Adrienn, Boros, Eszter, Hamvas, József, Varga, Márta, Mickevicius, Artautas, Faluhelyi, Nándor, Farkas, Orsolya, Váncsa, Szilárd, Nagy, Rita, Bunduc, Stefania, Hegyi, Péter Jenő, Márta, Katalin, Borka, Katalin, Doros, Attila, Hosszúfalusi, Nóra, Zubek, László, Erőss, Bálint, Molnár, Zsolt, Párniczky, Andrea, Hegyi, Péter, Szentesi, Andrea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098474/
https://www.ncbi.nlm.nih.gov/pubmed/35552440
http://dx.doi.org/10.1038/s41598-022-11517-w
_version_ 1784706391709057024
author Kiss, Szabolcs
Pintér, József
Molontay, Roland
Nagy, Marcell
Farkas, Nelli
Sipos, Zoltán
Fehérvári, Péter
Pecze, László
Földi, Mária
Vincze, Áron
Takács, Tamás
Czakó, László
Izbéki, Ferenc
Halász, Adrienn
Boros, Eszter
Hamvas, József
Varga, Márta
Mickevicius, Artautas
Faluhelyi, Nándor
Farkas, Orsolya
Váncsa, Szilárd
Nagy, Rita
Bunduc, Stefania
Hegyi, Péter Jenő
Márta, Katalin
Borka, Katalin
Doros, Attila
Hosszúfalusi, Nóra
Zubek, László
Erőss, Bálint
Molnár, Zsolt
Párniczky, Andrea
Hegyi, Péter
Szentesi, Andrea
author_facet Kiss, Szabolcs
Pintér, József
Molontay, Roland
Nagy, Marcell
Farkas, Nelli
Sipos, Zoltán
Fehérvári, Péter
Pecze, László
Földi, Mária
Vincze, Áron
Takács, Tamás
Czakó, László
Izbéki, Ferenc
Halász, Adrienn
Boros, Eszter
Hamvas, József
Varga, Márta
Mickevicius, Artautas
Faluhelyi, Nándor
Farkas, Orsolya
Váncsa, Szilárd
Nagy, Rita
Bunduc, Stefania
Hegyi, Péter Jenő
Márta, Katalin
Borka, Katalin
Doros, Attila
Hosszúfalusi, Nóra
Zubek, László
Erőss, Bálint
Molnár, Zsolt
Párniczky, Andrea
Hegyi, Péter
Szentesi, Andrea
author_sort Kiss, Szabolcs
collection PubMed
description Pancreatic necrosis is a consistent prognostic factor in acute pancreatitis (AP). However, the clinical scores currently in use are either too complicated or require data that are unavailable on admission or lack sufficient predictive value. We therefore aimed to develop a tool to aid in necrosis prediction. The XGBoost machine learning algorithm processed data from 2387 patients with AP. The confidence of the model was estimated by a bootstrapping method and interpreted via the 10th and the 90th percentiles of the prediction scores. Shapley Additive exPlanations (SHAP) values were calculated to quantify the contribution of each variable provided. Finally, the model was implemented as an online application using the Streamlit Python-based framework. The XGBoost classifier provided an AUC value of 0.757. Glucose, C-reactive protein, alkaline phosphatase, gender and total white blood cell count have the most impact on prediction based on the SHAP values. The relationship between the size of the training dataset and model performance shows that prediction performance can be improved. This study combines necrosis prediction and artificial intelligence. The predictive potential of this model is comparable to the current clinical scoring systems and has several advantages over them.
format Online
Article
Text
id pubmed-9098474
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-90984742022-05-14 Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases Kiss, Szabolcs Pintér, József Molontay, Roland Nagy, Marcell Farkas, Nelli Sipos, Zoltán Fehérvári, Péter Pecze, László Földi, Mária Vincze, Áron Takács, Tamás Czakó, László Izbéki, Ferenc Halász, Adrienn Boros, Eszter Hamvas, József Varga, Márta Mickevicius, Artautas Faluhelyi, Nándor Farkas, Orsolya Váncsa, Szilárd Nagy, Rita Bunduc, Stefania Hegyi, Péter Jenő Márta, Katalin Borka, Katalin Doros, Attila Hosszúfalusi, Nóra Zubek, László Erőss, Bálint Molnár, Zsolt Párniczky, Andrea Hegyi, Péter Szentesi, Andrea Sci Rep Article Pancreatic necrosis is a consistent prognostic factor in acute pancreatitis (AP). However, the clinical scores currently in use are either too complicated or require data that are unavailable on admission or lack sufficient predictive value. We therefore aimed to develop a tool to aid in necrosis prediction. The XGBoost machine learning algorithm processed data from 2387 patients with AP. The confidence of the model was estimated by a bootstrapping method and interpreted via the 10th and the 90th percentiles of the prediction scores. Shapley Additive exPlanations (SHAP) values were calculated to quantify the contribution of each variable provided. Finally, the model was implemented as an online application using the Streamlit Python-based framework. The XGBoost classifier provided an AUC value of 0.757. Glucose, C-reactive protein, alkaline phosphatase, gender and total white blood cell count have the most impact on prediction based on the SHAP values. The relationship between the size of the training dataset and model performance shows that prediction performance can be improved. This study combines necrosis prediction and artificial intelligence. The predictive potential of this model is comparable to the current clinical scoring systems and has several advantages over them. Nature Publishing Group UK 2022-05-12 /pmc/articles/PMC9098474/ /pubmed/35552440 http://dx.doi.org/10.1038/s41598-022-11517-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Kiss, Szabolcs
Pintér, József
Molontay, Roland
Nagy, Marcell
Farkas, Nelli
Sipos, Zoltán
Fehérvári, Péter
Pecze, László
Földi, Mária
Vincze, Áron
Takács, Tamás
Czakó, László
Izbéki, Ferenc
Halász, Adrienn
Boros, Eszter
Hamvas, József
Varga, Márta
Mickevicius, Artautas
Faluhelyi, Nándor
Farkas, Orsolya
Váncsa, Szilárd
Nagy, Rita
Bunduc, Stefania
Hegyi, Péter Jenő
Márta, Katalin
Borka, Katalin
Doros, Attila
Hosszúfalusi, Nóra
Zubek, László
Erőss, Bálint
Molnár, Zsolt
Párniczky, Andrea
Hegyi, Péter
Szentesi, Andrea
Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases
title Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases
title_full Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases
title_fullStr Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases
title_full_unstemmed Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases
title_short Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases
title_sort early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098474/
https://www.ncbi.nlm.nih.gov/pubmed/35552440
http://dx.doi.org/10.1038/s41598-022-11517-w
work_keys_str_mv AT kissszabolcs earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT pinterjozsef earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT molontayroland earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT nagymarcell earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT farkasnelli earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT siposzoltan earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT fehervaripeter earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT peczelaszlo earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT foldimaria earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT vinczearon earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT takacstamas earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT czakolaszlo earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT izbekiferenc earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT halaszadrienn earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT boroseszter earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT hamvasjozsef earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT vargamarta earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT mickeviciusartautas earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT faluhelyinandor earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT farkasorsolya earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT vancsaszilard earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT nagyrita earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT bunducstefania earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT hegyipeterjeno earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT martakatalin earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT borkakatalin earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT dorosattila earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT hosszufalusinora earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT zubeklaszlo earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT erossbalint earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT molnarzsolt earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT parniczkyandrea earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT hegyipeter earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT szentesiandrea earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases
AT earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases