Cargando…
Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases
Pancreatic necrosis is a consistent prognostic factor in acute pancreatitis (AP). However, the clinical scores currently in use are either too complicated or require data that are unavailable on admission or lack sufficient predictive value. We therefore aimed to develop a tool to aid in necrosis pr...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098474/ https://www.ncbi.nlm.nih.gov/pubmed/35552440 http://dx.doi.org/10.1038/s41598-022-11517-w |
_version_ | 1784706391709057024 |
---|---|
author | Kiss, Szabolcs Pintér, József Molontay, Roland Nagy, Marcell Farkas, Nelli Sipos, Zoltán Fehérvári, Péter Pecze, László Földi, Mária Vincze, Áron Takács, Tamás Czakó, László Izbéki, Ferenc Halász, Adrienn Boros, Eszter Hamvas, József Varga, Márta Mickevicius, Artautas Faluhelyi, Nándor Farkas, Orsolya Váncsa, Szilárd Nagy, Rita Bunduc, Stefania Hegyi, Péter Jenő Márta, Katalin Borka, Katalin Doros, Attila Hosszúfalusi, Nóra Zubek, László Erőss, Bálint Molnár, Zsolt Párniczky, Andrea Hegyi, Péter Szentesi, Andrea |
author_facet | Kiss, Szabolcs Pintér, József Molontay, Roland Nagy, Marcell Farkas, Nelli Sipos, Zoltán Fehérvári, Péter Pecze, László Földi, Mária Vincze, Áron Takács, Tamás Czakó, László Izbéki, Ferenc Halász, Adrienn Boros, Eszter Hamvas, József Varga, Márta Mickevicius, Artautas Faluhelyi, Nándor Farkas, Orsolya Váncsa, Szilárd Nagy, Rita Bunduc, Stefania Hegyi, Péter Jenő Márta, Katalin Borka, Katalin Doros, Attila Hosszúfalusi, Nóra Zubek, László Erőss, Bálint Molnár, Zsolt Párniczky, Andrea Hegyi, Péter Szentesi, Andrea |
author_sort | Kiss, Szabolcs |
collection | PubMed |
description | Pancreatic necrosis is a consistent prognostic factor in acute pancreatitis (AP). However, the clinical scores currently in use are either too complicated or require data that are unavailable on admission or lack sufficient predictive value. We therefore aimed to develop a tool to aid in necrosis prediction. The XGBoost machine learning algorithm processed data from 2387 patients with AP. The confidence of the model was estimated by a bootstrapping method and interpreted via the 10th and the 90th percentiles of the prediction scores. Shapley Additive exPlanations (SHAP) values were calculated to quantify the contribution of each variable provided. Finally, the model was implemented as an online application using the Streamlit Python-based framework. The XGBoost classifier provided an AUC value of 0.757. Glucose, C-reactive protein, alkaline phosphatase, gender and total white blood cell count have the most impact on prediction based on the SHAP values. The relationship between the size of the training dataset and model performance shows that prediction performance can be improved. This study combines necrosis prediction and artificial intelligence. The predictive potential of this model is comparable to the current clinical scoring systems and has several advantages over them. |
format | Online Article Text |
id | pubmed-9098474 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-90984742022-05-14 Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases Kiss, Szabolcs Pintér, József Molontay, Roland Nagy, Marcell Farkas, Nelli Sipos, Zoltán Fehérvári, Péter Pecze, László Földi, Mária Vincze, Áron Takács, Tamás Czakó, László Izbéki, Ferenc Halász, Adrienn Boros, Eszter Hamvas, József Varga, Márta Mickevicius, Artautas Faluhelyi, Nándor Farkas, Orsolya Váncsa, Szilárd Nagy, Rita Bunduc, Stefania Hegyi, Péter Jenő Márta, Katalin Borka, Katalin Doros, Attila Hosszúfalusi, Nóra Zubek, László Erőss, Bálint Molnár, Zsolt Párniczky, Andrea Hegyi, Péter Szentesi, Andrea Sci Rep Article Pancreatic necrosis is a consistent prognostic factor in acute pancreatitis (AP). However, the clinical scores currently in use are either too complicated or require data that are unavailable on admission or lack sufficient predictive value. We therefore aimed to develop a tool to aid in necrosis prediction. The XGBoost machine learning algorithm processed data from 2387 patients with AP. The confidence of the model was estimated by a bootstrapping method and interpreted via the 10th and the 90th percentiles of the prediction scores. Shapley Additive exPlanations (SHAP) values were calculated to quantify the contribution of each variable provided. Finally, the model was implemented as an online application using the Streamlit Python-based framework. The XGBoost classifier provided an AUC value of 0.757. Glucose, C-reactive protein, alkaline phosphatase, gender and total white blood cell count have the most impact on prediction based on the SHAP values. The relationship between the size of the training dataset and model performance shows that prediction performance can be improved. This study combines necrosis prediction and artificial intelligence. The predictive potential of this model is comparable to the current clinical scoring systems and has several advantages over them. Nature Publishing Group UK 2022-05-12 /pmc/articles/PMC9098474/ /pubmed/35552440 http://dx.doi.org/10.1038/s41598-022-11517-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Kiss, Szabolcs Pintér, József Molontay, Roland Nagy, Marcell Farkas, Nelli Sipos, Zoltán Fehérvári, Péter Pecze, László Földi, Mária Vincze, Áron Takács, Tamás Czakó, László Izbéki, Ferenc Halász, Adrienn Boros, Eszter Hamvas, József Varga, Márta Mickevicius, Artautas Faluhelyi, Nándor Farkas, Orsolya Váncsa, Szilárd Nagy, Rita Bunduc, Stefania Hegyi, Péter Jenő Márta, Katalin Borka, Katalin Doros, Attila Hosszúfalusi, Nóra Zubek, László Erőss, Bálint Molnár, Zsolt Párniczky, Andrea Hegyi, Péter Szentesi, Andrea Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases |
title | Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases |
title_full | Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases |
title_fullStr | Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases |
title_full_unstemmed | Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases |
title_short | Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases |
title_sort | early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098474/ https://www.ncbi.nlm.nih.gov/pubmed/35552440 http://dx.doi.org/10.1038/s41598-022-11517-w |
work_keys_str_mv | AT kissszabolcs earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT pinterjozsef earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT molontayroland earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT nagymarcell earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT farkasnelli earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT siposzoltan earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT fehervaripeter earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT peczelaszlo earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT foldimaria earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT vinczearon earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT takacstamas earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT czakolaszlo earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT izbekiferenc earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT halaszadrienn earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT boroseszter earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT hamvasjozsef earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT vargamarta earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT mickeviciusartautas earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT faluhelyinandor earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT farkasorsolya earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT vancsaszilard earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT nagyrita earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT bunducstefania earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT hegyipeterjeno earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT martakatalin earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT borkakatalin earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT dorosattila earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT hosszufalusinora earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT zubeklaszlo earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT erossbalint earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT molnarzsolt earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT parniczkyandrea earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT hegyipeter earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT szentesiandrea earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases AT earlypredictionofacutenecrotizingpancreatitisbyartificialintelligenceaprospectivecohortanalysisof2387cases |