Cargando…
The accuracy of machine learning approaches using non-image data for the prediction of COVID-19: A meta-analysis
OBJECTIVE: COVID-19 is a novel, severely contagious disease with enormous negative impact on humanity as well as the world economy. An expeditious, feasible tool for detecting COVID-19 remains yet elusive. Recently, there has been a surge of interest in applying machine learning techniques to predic...
Autores principales: | Kuo, Kuang-Ming, Talley, Paul C., Chang, Chao-Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098530/ https://www.ncbi.nlm.nih.gov/pubmed/35594810 http://dx.doi.org/10.1016/j.ijmedinf.2022.104791 |
Ejemplares similares
-
The accuracy of artificial intelligence used for non-melanoma skin cancer diagnoses: a meta-analysis
por: Kuo, Kuang Ming, et al.
Publicado: (2023) -
Predicting hospital-acquired pneumonia among schizophrenic patients: a machine learning approach
por: Kuo, Kuang Ming, et al.
Publicado: (2019) -
Machine Learning Coronary Artery Disease Prediction Based on Imaging and Non-Imaging Data
por: Kigka, Vassiliki I., et al.
Publicado: (2022) -
Accuracy of Machine Learning Classification Models for the Prediction of Type 2 Diabetes Mellitus: A Systematic Survey and Meta-Analysis Approach
por: Olusanya, Micheal O., et al.
Publicado: (2022) -
Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy
por: Fleuren, Lucas M., et al.
Publicado: (2020)