Cargando…
Ex Vivo Lung Perfusion: A Review of Current and Future Application in Lung Transplantation
The number of waitlisted lung transplant candidates exceeds the availability of donor organs. Barriers to utilization of donor lungs include suboptimal lung allograft function, long ischemic times due to geographical distance between donor and recipient, and a wide array of other logistical and medi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Healthcare
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098710/ https://www.ncbi.nlm.nih.gov/pubmed/35316525 http://dx.doi.org/10.1007/s41030-022-00185-w |
Sumario: | The number of waitlisted lung transplant candidates exceeds the availability of donor organs. Barriers to utilization of donor lungs include suboptimal lung allograft function, long ischemic times due to geographical distance between donor and recipient, and a wide array of other logistical and medical challenges. Ex vivo lung perfusion (EVLP) is a modality that allows donor lungs to be evaluated in a closed circuit outside of the body and extends lung donor assessment prior to final acceptance for transplantation. EVLP was first utilized successfully in 2001 in Lund, Sweden. Since its initial use, EVLP has facilitated hundreds of lung transplants that would not have otherwise happened. EVLP technology continues to evolve and improve, and currently there are multiple commercially available systems, and more under investigation worldwide. Although barriers to universal utilization of EVLP exist, the possibility for more widespread adaptation of this technology abounds. Not only does EVLP have diagnostic capabilities as an organ monitoring device but also the therapeutic potential to improve lung allograft quality when specific issues are encountered. Expanded treatment potential includes the use of immunomodulatory treatment to reduce primary graft dysfunction, as well as targeted antimicrobial therapy to treat infection. In this review, we will highlight the historical development, the current state of utilization/capability, and the future promise of this technology. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s41030-022-00185-w. |
---|