Cargando…
A temporal dependency feature in lower dimension for lung sound signal classification
Respiratory sounds are expressed as nonlinear and nonstationary signals, whose unpredictability makes it difficult to extract significant features for classification. Static cepstral coefficients such as Mel-frequency cepstral coefficients (MFCCs), have been used for classification of lung sound sig...
Autores principales: | Kwon, Amy M., Kang, Kyungtae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098886/ https://www.ncbi.nlm.nih.gov/pubmed/35551232 http://dx.doi.org/10.1038/s41598-022-11726-3 |
Ejemplares similares
-
Recognition Method for Broiler Sound Signals Based on Multi-Domain Sound Features and Classification Model
por: Tao, Weige, et al.
Publicado: (2022) -
Temporally-aware algorithms for the classification of anuran sounds
por: Luque, Amalia, et al.
Publicado: (2018) -
Feature-Based Fusion Using CNN for Lung and Heart Sound Classification †
por: Tariq, Zeenat, et al.
Publicado: (2022) -
Exploiting temporal and nonstationary features in breathing sound analysis for multiple obstructive sleep apnea severity classification
por: Kim, Jaepil, et al.
Publicado: (2017) -
Evaluation of features for classification of wheezes and normal respiratory sounds
por: Pramono, Renard Xaviero Adhi, et al.
Publicado: (2019)