Cargando…
Nomogram and Machine Learning Models Predict 1-Year Mortality Risk in Patients With Sepsis-Induced Cardiorenal Syndrome
OBJECTIVE: Early prediction of long-term outcomes in patients with sepsis-induced cardiorenal syndrome (CRS) remains a great challenge in clinical practice. Herein, we aimed to construct a nomogram and machine learning model for predicting the 1-year mortality risk in patients with sepsis-induced CR...
Autores principales: | Liu, Yiguo, Zhang, Yingying, Zhang, Xiaoqin, Liu, Xi, Zhou, Yanfang, Jin, Yun, Yu, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099150/ https://www.ncbi.nlm.nih.gov/pubmed/35573024 http://dx.doi.org/10.3389/fmed.2022.792238 |
Ejemplares similares
-
Development and Validation of a Prognostic Nomogram to Predict 30-Day Mortality Risk in Patients with Sepsis-Induced Cardiorenal Syndrome
por: Liu, Yiguo, et al.
Publicado: (2022) -
Cardiorenal Syndromes and Sepsis
por: Chelazzi, C., et al.
Publicado: (2011) -
Recombinant α-Klotho Protein Alleviated Acute Cardiorenal Injury in a Mouse Model of Lipopolysaccharide-Induced Septic Cardiorenal Syndrome Type 5
por: Liu, Xi, et al.
Publicado: (2019) -
Early Prediction of Mortality, Severity, and Length of Stay in the Intensive Care Unit of Sepsis Patients Based on Sepsis 3.0 by Machine Learning Models
por: Su, Longxiang, et al.
Publicado: (2021) -
Editorial: New Advances in Cardiorenal Syndrome
por: Calvier, Laurent, et al.
Publicado: (2022)