Cargando…
The Causal Fairness Field Guide: Perspectives From Social and Formal Sciences
Over the past several years, multiple different methods to measure the causal fairness of machine learning models have been proposed. However, despite the growing number of publications and implementations, there is still a critical lack of literature that explains the interplay of causality-based f...
Autores principales: | Carey, Alycia N., Wu, Xintao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099231/ https://www.ncbi.nlm.nih.gov/pubmed/35574571 http://dx.doi.org/10.3389/fdata.2022.892837 |
Ejemplares similares
-
Fairness of recommender systems in the recruitment domain: an analysis from technical and legal perspectives
por: Kumar, Deepak, et al.
Publicado: (2023) -
FAIR Digital Twins for Data-Intensive Research
por: Schultes, Erik, et al.
Publicado: (2022) -
Algorithmic Accountability in Context. Socio-Technical Perspectives on Structural Causal Models
por: Poechhacker, Nikolaus, et al.
Publicado: (2021) -
A review on individual and multistakeholder fairness in tourism recommender systems
por: Banerjee, Ashmi, et al.
Publicado: (2023) -
Fair and Effective Policing for Neighborhood Safety: Understanding and Overcoming Selection Biases
por: Ren, Weijeiying, et al.
Publicado: (2021)