Cargando…

Explosive Spalling Mechanism and Modeling of Concrete Lining Exposed to Fire

Traditional heat transfer analysis has been adopted to predict the damage in a tunnel under fire without considering the effect of concrete spalling, which leads to underestimation of the fire damage of concrete. However, accounting for the spalling effect of concrete under high temperature in an an...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiao, Rujia, Guo, Yinbo, Zhou, Hang, Xi, Huihui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099466/
https://www.ncbi.nlm.nih.gov/pubmed/35591465
http://dx.doi.org/10.3390/ma15093131
Descripción
Sumario:Traditional heat transfer analysis has been adopted to predict the damage in a tunnel under fire without considering the effect of concrete spalling, which leads to underestimation of the fire damage of concrete. However, accounting for the spalling effect of concrete under high temperature in an analytical heat transfer model is difficult because of the complexity of the spalling mechanism. This study aims to establish an analytical model to estimate the influence of concrete spalling on the fire-damage depth prediction. To overcome this challenge, first, a series of fire tests were conducted in a unidirectional heating system. The spalling phenomenon and spalling characteristics were observed. Based on the experimental test results, the moisture content of concrete is one of the key factors of spalling. Obvious layered spalling characteristics of concrete samples without drying could be observed under the unidirectional heat conduction system. The critical temperature of spalling is 600 °C, and the thickness of the spalling layer is 2 cm~2.5 cm. These two parameters are critical spalling conditions. Second, a multilayer model for the heat transfer analysis considering the spalling effect of tunnel lining under fire was proposed. By using Laplace transform and the series solving method for ordinary differential equations, the time-dependent temperature and stress fields of concrete lining during tunnel fire could be obtained, which are the basis of damage evolution. The analytical results agreed with the experimental data. The spalling depth of tunnel lining related to the temperature rise of tunnel fire could be predicted by using the proposed analytical model. The results of this research can be used to provide a better damage evaluation of tunnel lining under fire.