Cargando…
Rapid Post-Earthquake Structural Damage Assessment Using Convolutional Neural Networks and Transfer Learning
The adoption of artificial intelligence in post-earthquake inspections and reconnaissance has received considerable attention in recent years, owing to its exponential increase in computation capabilities and inherent potential in addressing disadvantages associated with manual inspections. Herein,...
Autores principales: | Ogunjinmi, Peter Damilola, Park, Sung-Sik, Kim, Bubryur, Lee, Dong-Eun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099597/ https://www.ncbi.nlm.nih.gov/pubmed/35591163 http://dx.doi.org/10.3390/s22093471 |
Ejemplares similares
-
Convolutional Neural Network-Based Rapid Post-Earthquake Structural Damage Detection: Case Study
por: Moscoso Alcantara, Edisson Alberto, et al.
Publicado: (2022) -
Convolutional neural network for earthquake detection and location
por: Perol, Thibaut, et al.
Publicado: (2018) -
An Automated Image-Based Multivariant Concrete Defect Recognition Using a Convolutional Neural Network with an Integrated Pooling Module
por: Kim, Bubryur, et al.
Publicado: (2022) -
Learning in Convolutional Neural Networks Accelerated by Transfer Entropy
por: Moldovan, Adrian, et al.
Publicado: (2021) -
Classification and Visualization of Alzheimer’s Disease using Volumetric Convolutional Neural Network and Transfer Learning
por: Oh, Kanghan, et al.
Publicado: (2019)