Cargando…
Green Corrosion Inhibition on Carbon-Fibre-Reinforced Aluminium Laminate in NaCl Using Aerva Lanata Flower Extract
Aluminium-based fibre–metal laminates are lucrative candidates for aerospace manufacturers since they are lightweight and high-strength materials. The flower extract of aerva lanata was studied in order to prevent the effect of corrosion on the aluminium-based fibre–metal laminates (FMLs) in basic m...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099620/ https://www.ncbi.nlm.nih.gov/pubmed/35566869 http://dx.doi.org/10.3390/polym14091700 |
_version_ | 1784706651032387584 |
---|---|
author | Hynes, Navasingh Rajesh Jesudoss Vignesh, Nagarajan Jawahar Barile, Claudia Velu, Pitchumani Shenbaga Baskaran, Thangagiri Jappes, Jebas Thangiah Winowlin Al-Khashman, Omar Ali Brykov, Michail Ene, Antoaneta |
author_facet | Hynes, Navasingh Rajesh Jesudoss Vignesh, Nagarajan Jawahar Barile, Claudia Velu, Pitchumani Shenbaga Baskaran, Thangagiri Jappes, Jebas Thangiah Winowlin Al-Khashman, Omar Ali Brykov, Michail Ene, Antoaneta |
author_sort | Hynes, Navasingh Rajesh Jesudoss |
collection | PubMed |
description | Aluminium-based fibre–metal laminates are lucrative candidates for aerospace manufacturers since they are lightweight and high-strength materials. The flower extract of aerva lanata was studied in order to prevent the effect of corrosion on the aluminium-based fibre–metal laminates (FMLs) in basic media. It is considered an eco-friendly corrosion inhibitor using natural sources. Its flower species belong to the Amaranthaceae family. The results of the Fourier-transform infrared spectroscopy (FTIR) show that this flower extract includes organic compounds such as aromatic links, heteroatoms, and oxygen, which can be used as an organic corrosion inhibitor in an acidic environment. The effectiveness of the aerva-lanata flower behaviour in acting as an inhibitor of the corrosion process of FMLs was studied in 3.5% NaCl solution. The inhibition efficiency was calculated within a range of concentration of the inhibitor at room temperature, using the weight-loss method, potentiodynamic polarization measurements and electrochemical-impedance spectroscopy (EIS). The results indicate a characterization of about 87.02% in the presence of 600 ppm of inhibitor. The Tafel curve in the polarization experiments shows an inhibition efficiency of 88%. The inhibition mechanism was the absorption on the FML surface, and its absorption was observed with the aid of the Langmuir adsorption isotherm. This complex protective film occupies a larger surface area on the surface of the FML. Hence, by restricting the surface of the metallic layer from the corrosive medium, the charge and ion switch at the FML surface is reduced, thereby increasing the corrosion resistance. |
format | Online Article Text |
id | pubmed-9099620 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90996202022-05-14 Green Corrosion Inhibition on Carbon-Fibre-Reinforced Aluminium Laminate in NaCl Using Aerva Lanata Flower Extract Hynes, Navasingh Rajesh Jesudoss Vignesh, Nagarajan Jawahar Barile, Claudia Velu, Pitchumani Shenbaga Baskaran, Thangagiri Jappes, Jebas Thangiah Winowlin Al-Khashman, Omar Ali Brykov, Michail Ene, Antoaneta Polymers (Basel) Article Aluminium-based fibre–metal laminates are lucrative candidates for aerospace manufacturers since they are lightweight and high-strength materials. The flower extract of aerva lanata was studied in order to prevent the effect of corrosion on the aluminium-based fibre–metal laminates (FMLs) in basic media. It is considered an eco-friendly corrosion inhibitor using natural sources. Its flower species belong to the Amaranthaceae family. The results of the Fourier-transform infrared spectroscopy (FTIR) show that this flower extract includes organic compounds such as aromatic links, heteroatoms, and oxygen, which can be used as an organic corrosion inhibitor in an acidic environment. The effectiveness of the aerva-lanata flower behaviour in acting as an inhibitor of the corrosion process of FMLs was studied in 3.5% NaCl solution. The inhibition efficiency was calculated within a range of concentration of the inhibitor at room temperature, using the weight-loss method, potentiodynamic polarization measurements and electrochemical-impedance spectroscopy (EIS). The results indicate a characterization of about 87.02% in the presence of 600 ppm of inhibitor. The Tafel curve in the polarization experiments shows an inhibition efficiency of 88%. The inhibition mechanism was the absorption on the FML surface, and its absorption was observed with the aid of the Langmuir adsorption isotherm. This complex protective film occupies a larger surface area on the surface of the FML. Hence, by restricting the surface of the metallic layer from the corrosive medium, the charge and ion switch at the FML surface is reduced, thereby increasing the corrosion resistance. MDPI 2022-04-21 /pmc/articles/PMC9099620/ /pubmed/35566869 http://dx.doi.org/10.3390/polym14091700 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hynes, Navasingh Rajesh Jesudoss Vignesh, Nagarajan Jawahar Barile, Claudia Velu, Pitchumani Shenbaga Baskaran, Thangagiri Jappes, Jebas Thangiah Winowlin Al-Khashman, Omar Ali Brykov, Michail Ene, Antoaneta Green Corrosion Inhibition on Carbon-Fibre-Reinforced Aluminium Laminate in NaCl Using Aerva Lanata Flower Extract |
title | Green Corrosion Inhibition on Carbon-Fibre-Reinforced Aluminium Laminate in NaCl Using Aerva Lanata Flower Extract |
title_full | Green Corrosion Inhibition on Carbon-Fibre-Reinforced Aluminium Laminate in NaCl Using Aerva Lanata Flower Extract |
title_fullStr | Green Corrosion Inhibition on Carbon-Fibre-Reinforced Aluminium Laminate in NaCl Using Aerva Lanata Flower Extract |
title_full_unstemmed | Green Corrosion Inhibition on Carbon-Fibre-Reinforced Aluminium Laminate in NaCl Using Aerva Lanata Flower Extract |
title_short | Green Corrosion Inhibition on Carbon-Fibre-Reinforced Aluminium Laminate in NaCl Using Aerva Lanata Flower Extract |
title_sort | green corrosion inhibition on carbon-fibre-reinforced aluminium laminate in nacl using aerva lanata flower extract |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099620/ https://www.ncbi.nlm.nih.gov/pubmed/35566869 http://dx.doi.org/10.3390/polym14091700 |
work_keys_str_mv | AT hynesnavasinghrajeshjesudoss greencorrosioninhibitiononcarbonfibrereinforcedaluminiumlaminateinnaclusingaervalanataflowerextract AT vigneshnagarajanjawahar greencorrosioninhibitiononcarbonfibrereinforcedaluminiumlaminateinnaclusingaervalanataflowerextract AT barileclaudia greencorrosioninhibitiononcarbonfibrereinforcedaluminiumlaminateinnaclusingaervalanataflowerextract AT velupitchumanishenbaga greencorrosioninhibitiononcarbonfibrereinforcedaluminiumlaminateinnaclusingaervalanataflowerextract AT baskaranthangagiri greencorrosioninhibitiononcarbonfibrereinforcedaluminiumlaminateinnaclusingaervalanataflowerextract AT jappesjebasthangiahwinowlin greencorrosioninhibitiononcarbonfibrereinforcedaluminiumlaminateinnaclusingaervalanataflowerextract AT alkhashmanomarali greencorrosioninhibitiononcarbonfibrereinforcedaluminiumlaminateinnaclusingaervalanataflowerextract AT brykovmichail greencorrosioninhibitiononcarbonfibrereinforcedaluminiumlaminateinnaclusingaervalanataflowerextract AT eneantoaneta greencorrosioninhibitiononcarbonfibrereinforcedaluminiumlaminateinnaclusingaervalanataflowerextract |