Cargando…
Applying Hybrid Lstm-Gru Model Based on Heterogeneous Data Sources for Traffic Speed Prediction in Urban Areas
With the advent of the Internet of Things (IoT), it has become possible to have a variety of data sets generated through numerous types of sensors deployed across large urban areas, thus empowering the notion of smart cities. In smart cities, various types of sensors may fall into different administ...
Autores principales: | Zafar, Noureen, Haq, Irfan Ul, Chughtai, Jawad-ur-Rehman, Shafiq, Omair |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099662/ https://www.ncbi.nlm.nih.gov/pubmed/35591037 http://dx.doi.org/10.3390/s22093348 |
Ejemplares similares
-
Traffic congestion prediction based on Estimated Time of Arrival
por: Zafar, Noureen, et al.
Publicado: (2020) -
A Heterogeneous Ensemble Approach for Travel Time Prediction Using Hybridized Feature Spaces and Support Vector Regression
por: Chughtai, Jawad-ur-Rehman, et al.
Publicado: (2022) -
Predicting Energy Consumption Using LSTM, Multi-Layer GRU and Drop-GRU Neural Networks
por: Mahjoub, Sameh, et al.
Publicado: (2022) -
Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM
por: Shahid, Farah, et al.
Publicado: (2020) -
Attention based GRU-LSTM for software defect prediction
por: Munir, Hafiz Shahbaz, et al.
Publicado: (2021)