Cargando…
Machine Learning and Pathway Analysis-Based Discovery of Metabolomic Markers Relating to Chronic Pain Phenotypes
Recent scientific evidence suggests that chronic pain phenotypes are reflected in metabolomic changes. However, problems associated with chronic pain, such as sleep disorders or obesity, may complicate the metabolome pattern. Such a complex phenotype was investigated to identify common metabolomics...
Autores principales: | Miettinen, Teemu, Nieminen, Anni I., Mäntyselkä, Pekka, Kalso, Eija, Lötsch, Jörn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099732/ https://www.ncbi.nlm.nih.gov/pubmed/35563473 http://dx.doi.org/10.3390/ijms23095085 |
Ejemplares similares
-
Pain interference type and level guide the assessment process in chronic pain: Categorizing pain patients entering tertiary pain treatment with the Brief Pain Inventory
por: Miettinen, Teemu, et al.
Publicado: (2019) -
Machine-learned identification of psychological subgroups with relation to pain interference in patients after breast cancer treatments
por: Sipilä, Reetta, et al.
Publicado: (2020) -
Machine-Learning Analysis of Serum Proteomics in Neuropathic Pain after Nerve Injury in Breast Cancer Surgery Points at Chemokine Signaling via SIRT2 Regulation
por: Lötsch, Jörn, et al.
Publicado: (2022) -
Machine-learned analysis of global and glial/opioid intersection–related DNA methylation in patients with persistent pain after breast cancer surgery
por: Kringel, Dario, et al.
Publicado: (2019) -
Sleep problems in pain patients entering tertiary pain care: the role of pain-related anxiety, medication use, self-reported diseases, and sleep disorders
por: Miettinen, Teemu, et al.
Publicado: (2022)